These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 18085289)

  • 1. A computer model of mammalian central CO2 chemoreception.
    Chernov M; Putnam RW; Leiter JC
    Adv Exp Med Biol; 2008; 605():301-5. PubMed ID: 18085289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mathematical model of pH(i) regulation in central CO2- chemoreception.
    Cordovez JM; Clausen C; Moore LC; Solomon IC
    Adv Exp Med Biol; 2008; 605():306-11. PubMed ID: 18085290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computational analysis of central CO2 chemosensitivity in Helix aspersa.
    Chernov MM; Daubenspeck JA; Denton JS; Pfeiffer JR; Putnam RW; Leiter JC
    Am J Physiol Cell Physiol; 2007 Jan; 292(1):C278-91. PubMed ID: 16928773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CO2 chemosensitivity in Helix aspersa: three potassium currents mediate pH-sensitive neuronal spike timing.
    Denton JS; McCann FV; Leiter JC
    Am J Physiol Cell Physiol; 2007 Jan; 292(1):C292-304. PubMed ID: 16928774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic hypercapnia modulates respiratory-related central pH/CO2 chemoreception in an amphibian, Bufo marinus.
    Gheshmy A; Vukelich R; Noronha A; Reid SG
    J Exp Biol; 2006 Mar; 209(Pt 6):1135-46. PubMed ID: 16513940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diethyl pyrocarbonate (DEPC) inhibits CO2 chemosensitivity in Helix aspersa.
    Lu DC; Erlichman JS; Leiter JC
    Respir Physiol; 1998 Jan; 111(1):65-78. PubMed ID: 9496473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO2 central chemosensitivity: why are there so many sensing molecules?
    Jiang C; Rojas A; Wang R; Wang X
    Respir Physiol Neurobiol; 2005 Feb; 145(2-3):115-26. PubMed ID: 15705527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of pH-sensitive TASK channels in central respiratory chemoreception.
    Bayliss DA; Barhanin J; Gestreau C; Guyenet PG
    Pflugers Arch; 2015 May; 467(5):917-29. PubMed ID: 25346157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High CO2 chemosensitivity versus wide sensing spectrum: a paradoxical problem and its solutions in cultured brainstem neurons.
    Su J; Yang L; Zhang X; Rojas A; Shi Y; Jiang C
    J Physiol; 2007 Feb; 578(Pt 3):831-41. PubMed ID: 17124273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperbaric oxygen and chemical oxidants stimulate CO2/H+-sensitive neurons in rat brain stem slices.
    Mulkey DK; Henderson RA; Putnam RW; Dean JB
    J Appl Physiol (1985); 2003 Sep; 95(3):910-21. PubMed ID: 12704094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemoreception and transduction on neuronal models.
    Chalazonitis N
    Adv Exp Med Biol; 1977; 78():85-100. PubMed ID: 19944
    [No Abstract]   [Full Text] [Related]  

  • 12. Glial modulation of CO2 chemosensory excitability in the retrotrapezoid nucleus of rodents.
    Erlichman JS; Putnam RW; Leiter JC
    Adv Exp Med Biol; 2008; 605():317-21. PubMed ID: 18085292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative aspects of central CO2 chemoreception.
    Erlichman JS; Leiter JC
    Respir Physiol; 1997 Nov; 110(2-3):177-85. PubMed ID: 9407610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CO2 chemoreception in the pulmonate snail, Helix aspersa.
    Erlichman JS; Leiter JC
    Respir Physiol; 1993 Sep; 93(3):347-63. PubMed ID: 8305038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple central chemoreceptor sites: cell types and function in vivo.
    Nattie G; Li A
    Adv Exp Med Biol; 2008; 605():343-7. PubMed ID: 18085297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic mechanisms of central CO(2) chemosensitivity.
    Chernov MM; Erlichman JS; Leiter JC
    Respir Physiol Neurobiol; 2010 Oct; 173(3):298-304. PubMed ID: 20380898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of intracellular pH and [Ca2+]i in acid chemoreception in type-I cells of the carotid body.
    Buckler KJ; Vaughan-Jones RD
    Adv Exp Med Biol; 1994; 360():41-55. PubMed ID: 7532906
    [No Abstract]   [Full Text] [Related]  

  • 18. CO2/H+ signal transduction and central ventilatory control.
    Kazemi H
    Adv Exp Med Biol; 2003; 536():401-6. PubMed ID: 14635693
    [No Abstract]   [Full Text] [Related]  

  • 19. [Inactivation of the sodium pump leads to activation of potassium and inactivation of the chlorine channel in the chemoreceptor membrane of the giant neuron of the snail].
    Aĭrapetian SN; Arvanov VL; Mazhinian SB; Azatian KV
    Dokl Akad Nauk SSSR; 1987; 296(4):998-1001. PubMed ID: 2448106
    [No Abstract]   [Full Text] [Related]  

  • 20. Serotonergic neurons as carbon dioxide sensors that maintain pH homeostasis.
    Richerson GB
    Nat Rev Neurosci; 2004 Jun; 5(6):449-61. PubMed ID: 15152195
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.