These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The modular architecture of Cellvibrio japonicus mannanases in glycoside hydrolase families 5 and 26 points to differences in their role in mannan degradation. Hogg D; Pell G; Dupree P; Goubet F; Martín-Orúe SM; Armand S; Gilbert HJ Biochem J; 2003 May; 371(Pt 3):1027-43. PubMed ID: 12523937 [TBL] [Abstract][Full Text] [Related]
4. A review of the enzymatic hydrolysis of mannans and synergistic interactions between β-mannanase, β-mannosidase and α-galactosidase. Malgas S; van Dyk JS; Pletschke BI World J Microbiol Biotechnol; 2015 Aug; 31(8):1167-75. PubMed ID: 26026279 [TBL] [Abstract][Full Text] [Related]
5. The GH5 1,4-β-mannanase from Bifidobacterium animalis subsp. lactis Bl-04 possesses a low-affinity mannan-binding module and highlights the diversity of mannanolytic enzymes. Morrill J; Kulcinskaja E; Sulewska AM; Lahtinen S; Stålbrand H; Svensson B; Abou Hachem M BMC Biochem; 2015 Nov; 16():26. PubMed ID: 26558435 [TBL] [Abstract][Full Text] [Related]
6. An overview of mannan structure and mannan-degrading enzyme systems. Moreira LR; Filho EX Appl Microbiol Biotechnol; 2008 May; 79(2):165-78. PubMed ID: 18385995 [TBL] [Abstract][Full Text] [Related]
7. Galactomannan degradation by thermophilic enzymes: a hot topic for biotechnological applications. Aulitto M; Fusco S; Limauro D; Fiorentino G; Bartolucci S; Contursi P World J Microbiol Biotechnol; 2019 Jan; 35(2):32. PubMed ID: 30701316 [TBL] [Abstract][Full Text] [Related]
8. Mannan biotechnology: from biofuels to health. Yamabhai M; Sak-Ubol S; Srila W; Haltrich D Crit Rev Biotechnol; 2016; 36(1):32-42. PubMed ID: 25025271 [TBL] [Abstract][Full Text] [Related]
9. Insight into microbial mannosidases: a review. Chauhan PS; Gupta N Crit Rev Biotechnol; 2017 Mar; 37(2):190-201. PubMed ID: 26745578 [TBL] [Abstract][Full Text] [Related]
10. Microbial β-mannosidases and their industrial applications. Costa DAL; Filho EXF Appl Microbiol Biotechnol; 2019 Jan; 103(2):535-547. PubMed ID: 30426153 [TBL] [Abstract][Full Text] [Related]
11. Purification and properties of beta-mannanases I and II from the germinated seeds of Trifolium repens. Mode of galactomannan degradation in vitro. Villarroya H; Williams J; Dey P; Villarroya S; Petek F Biochem J; 1978 Dec; 175(3):1079-87. PubMed ID: 33664 [TBL] [Abstract][Full Text] [Related]
12. Applications of Microbial β-Mannanases. Dawood A; Ma K Front Bioeng Biotechnol; 2020; 8():598630. PubMed ID: 33384989 [TBL] [Abstract][Full Text] [Related]
13. High-resolution structure of a modular hyperthermostable endo-β-1,4-mannanase from Thermotoga petrophila: The ancillary immunoglobulin-like module is a thermostabilizing domain. da Silva VM; Cabral AD; Sperança MA; Squina FM; Muniz JRC; Martin L; Nicolet Y; Garcia W Biochim Biophys Acta Proteins Proteom; 2020 Aug; 1868(8):140437. PubMed ID: 32325255 [TBL] [Abstract][Full Text] [Related]
14. Hydrolysis of isolated coffee mannan and coffee extract by mannanases of Sclerotium rolfsii. Sachslehner A; Foidl G; Foidl N; Gübitz G; Haltrich D J Biotechnol; 2000 Jun; 80(2):127-34. PubMed ID: 10908793 [TBL] [Abstract][Full Text] [Related]
16. Galactomannanases Man2 and Man5 from Thermotoga species: growth physiology on galactomannans, gene sequence analysis, and biochemical properties of recombinant enzymes. Parker KN; Chhabra SR; Lam D; Callen W; Duffaud GD; Snead MA; Short JM; Mathur EJ; Kelly RM Biotechnol Bioeng; 2001 Nov; 75(3):322-33. PubMed ID: 11590605 [TBL] [Abstract][Full Text] [Related]
17. Characterization of endo-β-mannanase from Enterobacter ludwigii MY271 and application in pulp industry. Yang M; Cai J; Wang C; Du X; Lin J Bioprocess Biosyst Eng; 2017 Jan; 40(1):35-43. PubMed ID: 27534412 [TBL] [Abstract][Full Text] [Related]
18. A cellulose-binding module of the Trichoderma reesei beta-mannanase Man5A increases the mannan-hydrolysis of complex substrates. Hägglund P; Eriksson T; Collén A; Nerinckx W; Claeyssens M; Stålbrand H J Biotechnol; 2003 Feb; 101(1):37-48. PubMed ID: 12523968 [TBL] [Abstract][Full Text] [Related]
19. Recombinant production and characterisation of two related GH5 endo-β-1,4-mannanases from Aspergillus nidulans FGSC A4 showing distinctly different transglycosylation capacity. Dilokpimol A; Nakai H; Gotfredsen CH; Baumann MJ; Nakai N; Abou Hachem M; Svensson B Biochim Biophys Acta; 2011 Dec; 1814(12):1720-9. PubMed ID: 21867780 [TBL] [Abstract][Full Text] [Related]
20. Thermophilic β-mannanases from bacteria: production, resources, structural features and bioengineering strategies. Sadaqat B; Dar MA; Sha C; Abomohra A; Shao W; Yong YC World J Microbiol Biotechnol; 2024 Mar; 40(4):130. PubMed ID: 38460032 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]