BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 18085597)

  • 1. Lead exposure during development results in increased neurofilament phosphorylation, neuritic beading, and temporal processing deficits within the murine auditory brainstem.
    Jones LG; Prins J; Park S; Walton JP; Luebke AE; Lurie DI
    J Comp Neurol; 2008 Feb; 506(6):1003-17. PubMed ID: 18085597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of lead on the avian auditory brainstem.
    Lurie DI; Brooks DM; Gray LC
    Neurotoxicology; 2006 Jan; 27(1):108-17. PubMed ID: 16162360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lead-induced alterations of glial fibrillary acidic protein (GFAP) in the developing rat brain.
    Harry GJ; Schmitt TJ; Gong Z; Brown H; Zawia N; Evans HL
    Toxicol Appl Pharmacol; 1996 Jul; 139(1):84-93. PubMed ID: 8685912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auditory and visual dysfunction following lead exposure.
    Otto DA; Fox DA
    Neurotoxicology; 1993; 14(2-3):191-207. PubMed ID: 8247393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental exposure to lead interferes with glial and neuronal differential gene expression in the rat cerebellum.
    Zawia NH; Harry GJ
    Toxicol Appl Pharmacol; 1996 May; 138(1):43-7. PubMed ID: 8658511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of glial-associated proteins in the developing chick auditory brainstem.
    Korn MJ; Cramer KS
    Dev Neurobiol; 2008 Jul; 68(8):1093-106. PubMed ID: 18498086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GFAP aggregates in the cochlear nerve increase the noise vulnerability of sensory cells in the organ of Corti in the murine model of Alexander disease.
    Masuda M; Tanaka KF; Kanzaki S; Wakabayashi K; Oishi N; Suzuki T; Ikenaka K; Ogawa K
    Neurosci Res; 2008 Sep; 62(1):15-24. PubMed ID: 18602179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Brn-3a protein and RNA expression in rat brain following low-level lead exposure during development on spatial learning and memory.
    Chang W; Chen J; Wei QY; Chen XM
    Toxicol Lett; 2006 Jun; 164(1):63-70. PubMed ID: 16384672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Moderate lead exposure elicits neurotrophic effects in cerebral cortical precursor cells in culture.
    Davidovics Z; DiCicco-Bloom E
    J Neurosci Res; 2005 Jun; 80(6):817-25. PubMed ID: 15884012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maternal low-level lead exposure reduces the expression of PSA-NCAM and the activity of sialyltransferase in the hippocampi of neonatal rat pups.
    Hu Q; Fu H; Ren T; Wang S; Zhou W; Song H; Han Y; Dong S
    Neurotoxicology; 2008 Jul; 29(4):675-81. PubMed ID: 18499259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Consequences of combined maternal, fetal and persistent postnatal hypothyroidism on the development of auditory function in Tshrhyt mutant mice.
    Song L; McGee JA; Walsh EJ
    Brain Res; 2006 Jul; 1101(1):59-72. PubMed ID: 16780814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic low-level Pb exposure during development decreases the expression of the voltage-dependent anion channel in auditory neurons of the brainstem.
    Prins JM; Brooks DM; Thompson CM; Lurie DI
    Neurotoxicology; 2010 Dec; 31(6):662-73. PubMed ID: 20797405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exposure of young rats to diphenyl ditelluride during lactation affects the homeostasis of the cytoskeleton in neural cells from striatum and cerebellum.
    Heimfarth L; Reis KP; Loureiro SO; de Lima BO; da Rocha JB; Pessoa-Pureur R
    Neurotoxicology; 2012 Oct; 33(5):1106-16. PubMed ID: 22705628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of chelation with meso-dimercaptosuccinic acid (DMSA) before and after the appearance of lead-induced neurotoxicity in the rat.
    Gong Z; Evans HL
    Toxicol Appl Pharmacol; 1997 Jun; 144(2):205-14. PubMed ID: 9194404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retarded development of neurons and oligodendroglia in rat forebrain produced by hyperphenylalaninemia results in permanent deficits in myelin despite long recovery periods.
    Reynolds R; Burri R; Herschkowitz N
    Exp Neurol; 1993 Dec; 124(2):357-67. PubMed ID: 7507064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Schwann cells revert to non-myelinating phenotypes in the deafened rat cochlea.
    Hurley PA; Crook JM; Shepherd RK
    Eur J Neurosci; 2007 Oct; 26(7):1813-21. PubMed ID: 17868369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prenatal and perinatal low level lead exposure alters brainstem auditory evoked responses in infants.
    Rothenberg SJ; Poblano A; Garza-Morales S
    Neurotoxicology; 1994; 15(3):695-9. PubMed ID: 7854608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental motor deficits induced by combined fetal exposure to lipopolysaccharide and early neonatal hypoxia/ischemia: a novel animal model for cerebral palsy in very premature infants.
    Girard S; Kadhim H; Beaudet N; Sarret P; Sébire G
    Neuroscience; 2009 Jan; 158(2):673-82. PubMed ID: 19010395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human influenza viral infection in utero alters glial fibrillary acidic protein immunoreactivity in the developing brains of neonatal mice.
    Fatemi SH; Emamian ES; Sidwell RW; Kist DA; Stary JM; Earle JA; Thuras P
    Mol Psychiatry; 2002; 7(6):633-40. PubMed ID: 12140787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic low-level lead exposure affects the monoaminergic system in the mouse superior olivary complex.
    Fortune T; Lurie DI
    J Comp Neurol; 2009 Apr; 513(5):542-58. PubMed ID: 19226511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.