BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

709 related articles for article (PubMed ID: 18085768)

  • 1. Two-dimensional reaction free energy surfaces of catalytic reaction: effects of protein conformational dynamics on enzyme catalysis.
    Min W; Xie XS; Bagchi B
    J Phys Chem B; 2008 Jan; 112(2):454-66. PubMed ID: 18085768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of conformational dynamics in kinetics of an enzymatic cycle in a nonequilibrium steady state.
    Min W; Xie XS; Bagchi B
    J Chem Phys; 2009 Aug; 131(6):065104. PubMed ID: 19691414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transition-state ensemble in enzyme catalysis: possibility, reality, or necessity?
    Ma B; Kumar S; Tsai CJ; Hu Z; Nussinov R
    J Theor Biol; 2000 Apr; 203(4):383-97. PubMed ID: 10736215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic disorder-driven substrate inhibition and bistability in a simple enzymatic reaction.
    Chaudhury S; Igoshin OA
    J Phys Chem B; 2009 Oct; 113(40):13421-8. PubMed ID: 19757836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Master equation approach to single oligomeric enzyme catalysis: mechanically controlled further catalysis.
    Das B; Gangopadhyay G
    J Chem Phys; 2010 Apr; 132(13):135102. PubMed ID: 20387959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of protein dynamics in reaction rate enhancement by enzymes.
    Agarwal PK
    J Am Chem Soc; 2005 Nov; 127(43):15248-56. PubMed ID: 16248667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freezing a single distal motion in dihydrofolate reductase.
    Sergi A; Watney JB; Wong KF; Hammes-Schiffer S
    J Phys Chem B; 2006 Feb; 110(5):2435-41. PubMed ID: 16471835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic catalysis and transfers in solution. I. Theory and computations, a unified view.
    Marcus RA
    J Chem Phys; 2006 Nov; 125(19):194504. PubMed ID: 17129120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of the conformational transitions in the assembling of the Michaelis complex of a bisubstrate enzyme: a (15)N relaxation study of Escherichia coli 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase.
    Lescop E; Lu Z; Liu Q; Xu H; Li G; Xia B; Yan H; Jin C
    Biochemistry; 2009 Jan; 48(2):302-12. PubMed ID: 19108643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How enzymes work: analysis by modern rate theory and computer simulations.
    Garcia-Viloca M; Gao J; Karplus M; Truhlar DG
    Science; 2004 Jan; 303(5655):186-95. PubMed ID: 14716003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme dynamics during catalysis measured by NMR spectroscopy.
    Kern D; Eisenmesser EZ; Wolf-Watz M
    Methods Enzymol; 2005; 394():507-24. PubMed ID: 15808235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic transition states: thermodynamics, dynamics and analogue design.
    Schramm VL
    Arch Biochem Biophys; 2005 Jan; 433(1):13-26. PubMed ID: 15581562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic dynamics of an enzyme underlies catalysis.
    Eisenmesser EZ; Millet O; Labeikovsky W; Korzhnev DM; Wolf-Watz M; Bosco DA; Skalicky JJ; Kay LE; Kern D
    Nature; 2005 Nov; 438(7064):117-21. PubMed ID: 16267559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of enzyme motions by solution NMR relaxation dispersion.
    Loria JP; Berlow RB; Watt ED
    Acc Chem Res; 2008 Feb; 41(2):214-21. PubMed ID: 18281945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-molecule Michaelis-Menten equations.
    Kou SC; Cherayil BJ; Min W; English BP; Xie XS
    J Phys Chem B; 2005 Oct; 109(41):19068-81. PubMed ID: 16853459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic disorder in single-molecule Michaelis-Menten kinetics: the reaction-diffusion formalism in the Wilemski-Fixman approximation.
    Chaudhury S; Cherayil BJ
    J Chem Phys; 2007 Sep; 127(10):105103. PubMed ID: 17867782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solute solvent dynamics and energetics in enzyme catalysis: the S(N)2 reaction of dehalogenase as a general benchmark.
    Olsson MH; Warshel A
    J Am Chem Soc; 2004 Nov; 126(46):15167-79. PubMed ID: 15548014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlated conformational fluctuations during enzymatic catalysis: Implications for catalytic rate enhancement.
    Alper KO; Singla M; Stone JL; Bagdassarian CK
    Protein Sci; 2001 Jul; 10(7):1319-30. PubMed ID: 11420434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic transition states and transition state analogues.
    Schramm VL
    Curr Opin Struct Biol; 2005 Dec; 15(6):604-13. PubMed ID: 16274984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. When does the Michaelis-Menten equation hold for fluctuating enzymes?
    Min W; Gopich IV; English BP; Kou SC; Xie XS; Szabo A
    J Phys Chem B; 2006 Oct; 110(41):20093-7. PubMed ID: 17034179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.