These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 18086129)

  • 1. Hind limb scaling of kangaroos and wallabies (superfamily Macropodoidea): implications for hopping performance, safety factor and elastic savings.
    McGowan CP; Skinner J; Biewener AA
    J Anat; 2008 Feb; 212(2):153-63. PubMed ID: 18086129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaling of the ankle extensor muscle-tendon units and the biomechanical implications for bipedal hopping locomotion in the post-pouch kangaroo Macropus fuliginosus.
    Snelling EP; Biewener AA; Hu Q; Taggart DA; Fuller A; Mitchell D; Maloney SK; Seymour RS
    J Anat; 2017 Dec; 231(6):921-930. PubMed ID: 29034479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Locomotion in extinct giant kangaroos: were sthenurines hop-less monsters?
    Janis CM; Buttrill K; Figueirido B
    PLoS One; 2014; 9(10):e109888. PubMed ID: 25333823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scaling of elastic strain energy in kangaroos and the benefits of being big.
    Bennett MB; Taylor GC
    Nature; 1995 Nov; 378(6552):56-9. PubMed ID: 7477284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanics of jumping versus steady hopping in yellow-footed rock wallabies.
    McGowan CP; Baudinette RV; Usherwood JR; Biewener AA
    J Exp Biol; 2005 Jul; 208(Pt 14):2741-51. PubMed ID: 16000543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joint work and power associated with acceleration and deceleration in tammar wallabies (Macropus eugenii).
    McGowan CP; Baudinette RV; Biewener AA
    J Exp Biol; 2005 Jan; 208(Pt 1):41-53. PubMed ID: 15601876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential design for hopping in two species of wallabies.
    McGowan CP; Baudinette RV; Biewener AA
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Jun; 150(2):151-8. PubMed ID: 16861021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of leg muscle function in tammar wallabies (M. eugenii) during level versus incline hopping.
    Biewener AA; McGowan C; Card GM; Baudinette RV
    J Exp Biol; 2004 Jan; 207(Pt 2):211-23. PubMed ID: 14668306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo muscle force-length behavior during steady-speed hopping in tammar wallabies.
    Biewener AA; Konieczynski DD; Baudinette RV
    J Exp Biol; 1998 Jun; 201(Pt 11):1681-94. PubMed ID: 9576879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unifying principles in terrestrial locomotion: do hopping Australian marsupials fit in?
    Bennett MB
    Physiol Biochem Zool; 2000; 73(6):726-35. PubMed ID: 11121346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional morphology of the ankle extensor muscle-tendon units in the springhare Pedetes capensis shows convergent evolution with macropods for bipedal hopping locomotion.
    Veiga GN; Biewener AA; Fuller A; van de Ven TMFN; McGowan CP; Panaino W; Snelling EP
    J Anat; 2020 Sep; 237(3):568-578. PubMed ID: 32584456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical consequences of scaling.
    Biewener AA
    J Exp Biol; 2005 May; 208(Pt 9):1665-76. PubMed ID: 15855398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ontogenetic scaling of pelvic limb muscles, tendons and locomotor economy in the ostrich (
    Channon SB; Young IS; Cordner B; Swann N
    J Exp Biol; 2019 Sep; 222(Pt 17):. PubMed ID: 31350301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of proximal muscle function during level versus incline hopping in tammar wallabies (Macropus eugenii).
    McGowan CP; Baudinette RV; Biewener AA
    J Exp Biol; 2007 Apr; 210(Pt 7):1255-65. PubMed ID: 17371924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetics and biomechanics of locomotion by red kangaroos (Macropus rufus).
    Kram R; Dawson TJ
    Comp Biochem Physiol B Biochem Mol Biol; 1998 May; 120(1):41-9. PubMed ID: 9787777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring muscle over three orders of magnitude: Widespread positive allometry among locomotor and body support musculature in the pectoral girdle of varanid lizards (Varanidae).
    Cieri RL; Dick TJM; Clemente CJ
    J Anat; 2020 Dec; 237(6):1114-1135. PubMed ID: 32710503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional capacity of kangaroo rat hindlimbs: adaptations for locomotor performance.
    Rankin JW; Doney KM; McGowan CP
    J R Soc Interface; 2018 Jul; 15(144):. PubMed ID: 29997260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional specialization and ontogenetic scaling of limb anatomy in Alligator mississippiensis.
    Allen V; Elsey RM; Jones N; Wright J; Hutchinson JR
    J Anat; 2010 Apr; 216(4):423-45. PubMed ID: 20148991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divergent locomotor evolution in "giant" kangaroos: Evidence from foot bone bending resistances and microanatomy.
    Wagstaffe AY; O'Driscoll AM; Kunz CJ; Rayfield EJ; Janis CM
    J Morphol; 2022 Mar; 283(3):313-332. PubMed ID: 34997777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elastic and length-force characteristics of the gastrocnemius of the hopping mouse (Notomys alexis) and the rat (Rattus norvegicus).
    Ettema GJ
    J Exp Biol; 1996 Jun; 199(Pt 6):1277-85. PubMed ID: 8691113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.