BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 18086201)

  • 1. Distinct regulators control the expression of methanol methyltransferase isozymes in Methanosarcina acetivorans C2A.
    Bose A; Metcalf WW
    Mol Microbiol; 2008 Feb; 67(3):649-61. PubMed ID: 18086201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic, physiological and biochemical characterization of multiple methanol methyltransferase isozymes in Methanosarcina acetivorans C2A.
    Pritchett MA; Metcalf WW
    Mol Microbiol; 2005 Jun; 56(5):1183-94. PubMed ID: 15882413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential regulation of the three methanol methyltransferase isozymes in Methanosarcina acetivorans C2A.
    Bose A; Pritchett MA; Rother M; Metcalf WW
    J Bacteriol; 2006 Oct; 188(20):7274-83. PubMed ID: 17015666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiology and posttranscriptional regulation of methanol:coenzyme M methyltransferase isozymes in Methanosarcina acetivorans C2A.
    Opulencia RB; Bose A; Metcalf WW
    J Bacteriol; 2009 Nov; 191(22):6928-35. PubMed ID: 19767431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of putative methyl-sulphide methyltransferases in Methanosarcina acetivorans C2A.
    Bose A; Kulkarni G; Metcalf WW
    Mol Microbiol; 2009 Oct; 74(1):227-238. PubMed ID: 19732345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic analysis of the methanol- and methylamine-specific methyltransferase 2 genes of Methanosarcina acetivorans C2A.
    Bose A; Pritchett MA; Metcalf WW
    J Bacteriol; 2008 Jun; 190(11):4017-26. PubMed ID: 18375552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methanol-dependent gene expression demonstrates that methyl-coenzyme M reductase is essential in Methanosarcina acetivorans C2A and allows isolation of mutants with defects in regulation of the methanol utilization pathway.
    Rother M; Boccazzi P; Bose A; Pritchett MA; Metcalf WW
    J Bacteriol; 2005 Aug; 187(16):5552-9. PubMed ID: 16077099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A CRISPRi-dCas9 System for Archaea and Its Use To Examine Gene Function during Nitrogen Fixation by Methanosarcina acetivorans.
    Dhamad AE; Lessner DJ
    Appl Environ Microbiol; 2020 Oct; 86(21):. PubMed ID: 32826220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of nitrogen and carbon sources on transcription of soluble methyltransferases in Methanosarcina mazei strain Go1.
    Veit K; Ehlers C; Schmitz RA
    J Bacteriol; 2005 Sep; 187(17):6147-54. PubMed ID: 16109956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An archaeal SET domain protein exhibits distinct lysine methyltransferase activity towards DNA-associated protein MC1-alpha.
    Manzur KL; Zhou MM
    FEBS Lett; 2005 Jul; 579(17):3859-65. PubMed ID: 15978576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo role of three fused corrinoid/methyl transfer proteins in Methanosarcina acetivorans.
    Oelgeschläger E; Rother M
    Mol Microbiol; 2009 Jun; 72(5):1260-72. PubMed ID: 19432805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ss-LrpB, a transcriptional regulator from Sulfolobus solfataricus, regulates a gene cluster with a pyruvate ferredoxin oxidoreductase-encoding operon and permease genes.
    Peeters E; Albers SV; Vassart A; Driessen AJ; Charlier D
    Mol Microbiol; 2009 Feb; 71(4):972-88. PubMed ID: 19170871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methanogenesis by Methanosarcina acetivorans involves two structurally and functionally distinct classes of heterodisulfide reductase.
    Buan NR; Metcalf WW
    Mol Microbiol; 2010 Feb; 75(4):843-53. PubMed ID: 19968794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic analysis of mch mutants in two Methanosarcina species demonstrates multiple roles for the methanopterin-dependent C-1 oxidation/reduction pathway and differences in H(2) metabolism between closely related species.
    Guss AM; Mukhopadhyay B; Zhang JK; Metcalf WW
    Mol Microbiol; 2005 Mar; 55(6):1671-80. PubMed ID: 15752192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inverse transcriptional activities during complementary chromatic adaptation are controlled by the response regulator RcaC binding to red and green light-responsive promoters.
    Li L; Alvey RM; Bezy RP; Kehoe DM
    Mol Microbiol; 2008 Apr; 68(2):286-97. PubMed ID: 18346116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of gvp genes encoding gas vesicle proteins in halophilic Archaea.
    Scheuch S; Marschaus L; Sartorius-Neef S; Pfeifer F
    Arch Microbiol; 2008 Sep; 190(3):333-9. PubMed ID: 18385982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the Haloarcula hispanica amyH gene promoter, an archaeal promoter that confers promoter activity in Escherichia coli.
    Zeng C; Zhao YZ; Cui CZ; Zhang H; Zhu JY; Tang XF; Shen P; Huang YP; Chen XD
    Gene; 2009 Aug; 442(1-2):1-7. PubMed ID: 19376209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The trimethylamine methyltransferase gene and multiple dimethylamine methyltransferase genes of Methanosarcina barkeri contain in-frame and read-through amber codons.
    Paul L; Ferguson DJ; Krzycki JA
    J Bacteriol; 2000 May; 182(9):2520-9. PubMed ID: 10762254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variable coordination of cotranscribed genes in Escherichia coli following antisense repression.
    Dryselius R; Nikravesh A; Kulyté A; Goh S; Good L
    BMC Microbiol; 2006 Nov; 6():97. PubMed ID: 17118182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the NrpR regulon in Methanosarcina mazei Gö1.
    Weidenbach K; Ehlers C; Kock J; Ehrenreich A; Schmitz RA
    Arch Microbiol; 2008 Sep; 190(3):319-32. PubMed ID: 18415079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.