These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 1808712)

  • 1. Localisation of putative mechanoelectrical transducer channels in cochlear hair cells by immunoelectron microscopy.
    Hackney CM; Furness DN; Benos DJ
    Scanning Microsc; 1991 Sep; 5(3):741-5; discussion 745-6. PubMed ID: 1808712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Putative immunolocalization of the mechanoelectrical transduction channels in mammalian cochlear hair cells.
    Hackney CM; Furness DN; Benos DJ; Woodley JF; Barratt J
    Proc Biol Sci; 1992 Jun; 248(1323):215-21. PubMed ID: 1354359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The binding site on cochlear stereocilia for antisera raised against renal Na+ channels is blocked by amiloride and dihydrostreptomycin.
    Furness DN; Hackney CM; Benos DJ
    Hear Res; 1996 Apr; 93(1-2):136-46. PubMed ID: 8735075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High resolution scanning electron microscopy of stereocilia in the cochlea of normal, postmortem, and drug-treated guinea pigs.
    Osborne MP; Comis SD
    J Electron Microsc Tech; 1990 Jul; 15(3):245-60. PubMed ID: 2374035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological correlates of mechanotransduction in acousticolateral hair cells.
    Pickles JO; Rouse GW; von Perger M
    Scanning Microsc; 1991 Dec; 5(4):1115-24; discussion 1124-8. PubMed ID: 1822033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinematic analysis of shear displacement as a means for operating mechanotransduction channels in the contact region between adjacent stereocilia of mammalian cochlear hair cells.
    Furness DN; Zetes DE; Hackney CM; Steele CR
    Proc Biol Sci; 1997 Jan; 264(1378):45-51. PubMed ID: 9061959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanotransduction in vertebrate hair cells: structure and function of the stereociliary bundle.
    Hackney CM; Furness DN
    Am J Physiol; 1995 Jan; 268(1 Pt 1):C1-13. PubMed ID: 7840137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acid-sensing ion channel-1b in the stereocilia of mammalian cochlear hair cells.
    Ugawa S; Inagaki A; Yamamura H; Ueda T; Ishida Y; Kajita K; Shimizu H; Shimada S
    Neuroreport; 2006 Aug; 17(12):1235-9. PubMed ID: 16951561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Stereociliary cross-links on the guinea pig utricle hair cells].
    Wu WQ
    Lin Chuang Er Bi Yan Hou Ke Za Zhi; 2000 Oct; 14(10):460-1. PubMed ID: 12563719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cadherin 23 is a component of the transient lateral links in the developing hair bundles of cochlear sensory cells.
    Michel V; Goodyear RJ; Weil D; Marcotti W; Perfettini I; Wolfrum U; Kros CJ; Richardson GP; Petit C
    Dev Biol; 2005 Apr; 280(2):281-94. PubMed ID: 15882573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dimensions and structural attachments of tip links in mammalian cochlear hair cells and the effects of exposure to different levels of extracellular calcium.
    Furness DN; Katori Y; Nirmal Kumar B; Hackney CM
    Neuroscience; 2008 Jun; 154(1):10-21. PubMed ID: 18384968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An immunogold investigation of the distribution of calmodulin in the apex of cochlear hair cells.
    Furness DN; Karkanevatos A; West B; Hackney CM
    Hear Res; 2002 Nov; 173(1-2):10-20. PubMed ID: 12372631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation of expression of the actin filament-bundling protein espin with stereociliary bundle formation in the developing inner ear.
    Li H; Liu H; Balt S; Mann S; Corrales CE; Heller S
    J Comp Neurol; 2004 Jan; 468(1):125-34. PubMed ID: 14648695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in mechano-transducer channel kinetics underlie tonotopic distribution of fast adaptation in auditory hair cells.
    Ricci A
    J Neurophysiol; 2002 Apr; 87(4):1738-48. PubMed ID: 11929895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential glycosylation of auditory and vestibular hair bundle proteins revealed by peanut agglutinin.
    Goodyear R; Richardson G
    J Comp Neurol; 1994 Jul; 345(2):267-78. PubMed ID: 7929901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Are tip links the basis for mechanosensitivity of hair cells?].
    Gitter AH
    HNO; 1994 Jun; 42(6):327-33. PubMed ID: 7520893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for opening of hair-cell transducer channels after tip-link loss.
    Meyer J; Furness DN; Zenner HP; Hackney CM; Gummer AW
    J Neurosci; 1998 Sep; 18(17):6748-56. PubMed ID: 9712646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-links between stereocilia in the guinea pig cochlea.
    Furness DN; Hackney CM
    Hear Res; 1985 May; 18(2):177-88. PubMed ID: 4044419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal changes in the distribution of LHFPL5 in mice cochlear hair bundles during development and in the absence of PCDH15.
    Mahendrasingam S; Fettiplace R; Alagramam KN; Cross E; Furness DN
    PLoS One; 2017; 12(10):e0185285. PubMed ID: 29069081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunolocalization of myosin Ibeta in the hair cell's hair bundle.
    Metcalf AB
    Cell Motil Cytoskeleton; 1998; 39(2):159-65. PubMed ID: 9484957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.