BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 1808719)

  • 1. Elemental analysis and fine structure of mitochondrial granules in growth plate chondrocytes studied by electron energy loss spectroscopy and energy dispersive X-ray microanalysis.
    Wroblewski J; Wróblewski R; Mory C; Colliex C
    Scanning Microsc; 1991 Sep; 5(3):885-92; discussion 893-4. PubMed ID: 1808719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray microanalysis of freeze-dried and frozen-hydrated cryosections.
    Zierold K
    J Electron Microsc Tech; 1988 May; 9(1):65-82. PubMed ID: 3199231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray microanalysis of cartilage and chondrocytes.
    Wroblewski J; Makower AM
    Scanning Microsc; 1988 Jun; 2(2):1103-11. PubMed ID: 3399850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological electron energy loss spectroscopy in the field-emission scanning transmission electron microscope.
    Leapman RD; Sun SQ; Hunt JA; Andrews SB
    Scanning Microsc Suppl; 1994; 8():245-58; discussion 258-9. PubMed ID: 7638490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of electron probe X-ray microanalysis to calcification studies of bone and cartilage.
    Landis WJ
    Scan Electron Microsc; 1979; (2):555-70. PubMed ID: 524025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elemental levels in mast cell granules differ in sections from normal and diabetic rats: an X-ray microanalysis study.
    Kendall MD
    Scanning Microsc; 1988 Mar; 2(1):331-6. PubMed ID: 3368763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray microanalysis of growth cartilage after rapid freezing, low temperature freeze drying and embedding in resin.
    Appleton J
    Scanning Microsc; 1987 Sep; 1(3):1135-44. PubMed ID: 3310204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A low temperature vacuum embedding procedure for X-ray microanalysis of biological specimens at subcellular level.
    Wroblewski R; Wroblewski J; Wikström SO; Anniko M
    Scanning Microsc; 1990 Sep; 4(3):787-92; discussion 792-3. PubMed ID: 2080438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of early hard tissue formation in dentine by energy dispersive X-ray microanalysis and energy-filtering transmission electron microscopy.
    Wiesmann HP; Plate U; Höhling HJ; Barckhaus RH; Zierold K
    Scanning Microsc; 1993 Jun; 7(2):711-8. PubMed ID: 8108683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a preparative method for x-ray microanalysis of soft tissues.
    Pool TB; Smith NK; Doyle KH; Cameron IL
    Cytobios; 1980; 28(109):17-33. PubMed ID: 7000449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron probe microanalysis of biological soft tissues: principle and technique.
    Lechene C
    Fed Proc; 1980 Sep; 39(11):2871-80. PubMed ID: 7409208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age dependent dehydration of postmitotic cells as measured by X-ray microanalysis of bulk specimens.
    Lustyik G; Nagy I
    Scanning Microsc; 1988 Mar; 2(1):289-99. PubMed ID: 3285456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of electron probe X-ray microanalysis studies of salivary gland cells.
    Izutsu KT; Cantino ME; Johnson DE
    Microsc Res Tech; 1994 Jan; 27(1):71-9. PubMed ID: 8155906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical composition of melanosomes, lipofuscin and melanolipofuscin granules of human RPE tissues.
    Biesemeier A; Schraermeyer U; Eibl O
    Exp Eye Res; 2011 Jul; 93(1):29-39. PubMed ID: 21524648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative X-ray microanalysis of P, Ca, and S in the mucus secretory granules of the cryofixed frog palate epithelium.
    Wagner D; Puchelle E; Hinnrasky J; Girard P; Balossier G
    Microsc Res Tech; 1994 Jun; 28(2):141-8. PubMed ID: 8054663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of H+ concentration on amorphous mineral granules: structural stability and elemental mobilization.
    Corrêa JD; Bruno MI; Allodi S; Farina M
    J Struct Biol; 2009 Apr; 166(1):59-66. PubMed ID: 19138745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray microanalysis of hydrated biological specimens.
    Makita T; Ueda H; Hirose H; Idegomori T
    Scan Electron Microsc; 1982; (Pt 3):1215-20. PubMed ID: 6820572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strontium, a tracer to study the transport of calcium in mineralizing tissues by electron probe microanalysis.
    Krefting ER; Frentzel K; Tessarek J; Höhling HJ
    Scanning Microsc; 1993 Mar; 7(1):203-7. PubMed ID: 8316791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-ray microanalysis of frozen-hydrated specimens.
    Zierold K
    Scan Electron Microsc; 1983; (Pt 2):809-26. PubMed ID: 6635577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A procedure to prepare cultured cells in suspension for electron probe X-ray microanalysis: application to scanning and transmission electron microscopy.
    Fernández-Segura E; Cañizares FJ; Cubero MA; Campos A; Warley A
    J Microsc; 1999 Oct; 196(Pt 1):19-25. PubMed ID: 10540252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.