These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 18087444)

  • 1. Near-field scanning optical microscopy of single molecules by femtosecond two-photon excitation.
    Lewis MK; Wolanin P; Gafni A; Steel DG
    Opt Lett; 1998 Jul; 23(14):1111-3. PubMed ID: 18087444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoemission electron microscopy as a tool for the investigation of optical near fields.
    Cinchetti M; Gloskovskii A; Nepjiko SA; Schönhense G; Rochholz H; Kreiter M
    Phys Rev Lett; 2005 Jul; 95(4):047601. PubMed ID: 16090841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scanning near-field optical coherent anti-Stokes Raman microscopy (SNOM-CARS) with femtosecond laser pulses in vibrational and electronic resonance.
    Namboodiri M; Khan TZ; Bom S; Flachenecker G; Materny A
    Opt Express; 2013 Jan; 21(1):918-26. PubMed ID: 23388985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence lifetime imaging with near-field scanning optical microscopy.
    Kwak ES; Kang TJ; Vanden Bout DA
    Anal Chem; 2001 Jul; 73(14):3257-62. PubMed ID: 11476223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: a tool for nonlinear optics at the nanoscale.
    Celebrano M; Biagioni P; Zavelani-Rossi M; Polli D; Labardi M; Allegrini M; Finazzi M; Duò L; Cerullo G
    Rev Sci Instrum; 2009 Mar; 80(3):033704. PubMed ID: 19334924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of broadband and ultrabroadband pulses at MHz and GHz pulse-repetition rates for nonlinear femtosecond-laser scanning microscopy.
    Studier H; Breunig HG; König K
    J Biophotonics; 2011 Jan; 4(1-2):84-91. PubMed ID: 20222101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous wave two-photon scanning near-field optical microscopy.
    Kirsch AK; Subramaniam V; Striker G; Schnetter C; Arndt-Jovin DJ; Jovin TM
    Biophys J; 1998 Sep; 75(3):1513-21. PubMed ID: 9726953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Picosecond multiphoton scanning near-field optical microscopy.
    Jenei A; Kirsch AK; Subramaniam V; Arndt-Jovin DJ; Jovin TM
    Biophys J; 1999 Feb; 76(2):1092-100. PubMed ID: 9916041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-photon excitation ofp-quaterphenyl with a mode-locked femtosecond Ti:sapphire laser.
    Gryczynski I; Malak H; Lakowicz JR
    J Fluoresc; 1996 Sep; 6(3):139-45. PubMed ID: 24227202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-Photon Fluorescence Excitation Cross Sections of Biomolecular Probes from 690 to 960 nm.
    Albota MA; Xu C; Webb WW
    Appl Opt; 1998 Nov; 37(31):7352-6. PubMed ID: 18301569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast Photon-Induced Tunneling Microscopy.
    Garg M; Martin-Jimenez A; Luo Y; Kern K
    ACS Nano; 2021 Nov; 15(11):18071-18084. PubMed ID: 34723474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A promising new wavelength region for three-photon fluorescence microscopy of live cells.
    Norris G; Amor R; Dempster J; Amos WB; McConnell G
    J Microsc; 2012 Jun; 246(3):266-73. PubMed ID: 22458977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence advantages with microscopic spatiotemporal control.
    Goswami D; Roy D; De AK
    Proc SPIE Int Soc Opt Eng; 2010 Feb; 7569():. PubMed ID: 23814447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes.
    König K; Becker TW; Fischer P; Riemann I; Halbhuber KJ
    Opt Lett; 1999 Jan; 24(2):113-5. PubMed ID: 18071425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-degenerate 2-photon excitation in scattering medium for fluorescence microscopy.
    Yang MH; Abashin M; Saisan PA; Tian P; Ferri CG; Devor A; Fainman Y
    Opt Express; 2016 Dec; 24(26):30173-30187. PubMed ID: 28059294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-density optical data storage with one-photon and two-photon near-field fluorescence microscopy.
    Shen Y; Swiatkiewicz J; Jakubczyk D; Xu F; Prasad PN; Vaia RA; Reinhardt BA
    Appl Opt; 2001 Feb; 40(6):938-40. PubMed ID: 18357076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution two-photon excitation microscopy of ocular tissues in porcine eye.
    Wang BG; Eitner A; Lindenau J; Halbhuber KJ
    Lasers Surg Med; 2008 Apr; 40(4):247-56. PubMed ID: 18412222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical characterization of probes for photon scanning tunnelling microscopy.
    Vohnsen B; Bozhevolnyi SI
    J Microsc; 1999; 194(Pt 2-3):311-6. PubMed ID: 11388257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-Color, Two-Photon Imaging at Long Excitation Wavelengths Using a Diamond Raman Laser.
    Trägårdh J; Murtagh M; Robb G; Parsons M; Lin J; Spence DJ; McConnell G
    Microsc Microanal; 2016 Aug; 22(4):803-7. PubMed ID: 27492283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of a femtosecond fiber laser for two-photon fluorescence correlation spectroscopy.
    Unruh JR; Price ES; Molla RG; Hui R; Johnson CK
    Microsc Res Tech; 2006 Nov; 69(11):891-3. PubMed ID: 16886226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.