These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 18087486)

  • 21. Impact of laser excitation intensity on deep UV fluorescence detection in microchip electrophoresis.
    Schulze P; Ludwig M; Belder D
    Electrophoresis; 2008 Dec; 29(24):4894-9. PubMed ID: 19025868
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two-photon microscopy using an Yb(3+)-doped fiber laser with variable pulse widths.
    Kim DU; Song H; Song W; Kwon HS; Sung M; Kim DY
    Opt Express; 2012 May; 20(11):12341-9. PubMed ID: 22714221
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermal-Lens-Induced Anomalous Solvent's effect on Fluorescence Produced by Two-Photon Continuous-Wave Laser Excitation.
    Fischer M; Tran CD
    Appl Opt; 2000 Nov; 39(33):6257-62. PubMed ID: 18354634
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two-photon fluorescence scanning near-field microscopy based on a focused evanescent field under total internal reflection.
    Chon JW; Gu M; Bullen C; Mulvaney P
    Opt Lett; 2003 Oct; 28(20):1930-2. PubMed ID: 14587779
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D resolved two-photon fluorescence microscopy of living cells using a modified confocal laser scanning microscope.
    König K; Simon U; Halbhuber KJ
    Cell Mol Biol (Noisy-le-grand); 1996 Dec; 42(8):1181-94. PubMed ID: 8997522
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multi-point scanning two-photon excitation microscopy by utilizing a high-peak-power 1042-nm laser.
    Otomo K; Hibi T; Murata T; Watanabe H; Kawakami R; Nakayama H; Hasebe M; Nemoto T
    Anal Sci; 2015; 31(4):307-13. PubMed ID: 25864674
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-dimensional laser scanning two-photon fluorescence confocal microscopy of polymer materials using a new, efficient upconverting fluorophore.
    Bhawalkar JD; Swiatkiewicz J; Pan SJ; Samarabandu JK; Liou WS; He GS; Berezney R; Cheng PC; Prasad PN
    Scanning; 1996 Nov; 18(8):562-6. PubMed ID: 8946771
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stone/tissue differentiation for holmium laser lithotripsy using autofluorescence.
    Lange B; Cordes J; Brinkmann R
    Lasers Surg Med; 2015 Nov; 47(9):737-44. PubMed ID: 26392115
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Laser tweezers are sources of two-photon excitation.
    König K
    Cell Mol Biol (Noisy-le-grand); 1998 Jul; 44(5):721-33. PubMed ID: 9764743
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Resolution enhancement of two-photon microscopy via intensity-modulated laser scanning structured illumination.
    Yeh CH; Chen SY
    Appl Opt; 2015 Mar; 54(9):2309-17. PubMed ID: 25968516
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Intensity loss of two-photon excitation fluorescence microscopy images of mouse oocyte chromosomes].
    Zhao FY; Wu HX; Chen DY; Ma WY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jul; 34(7):1754-7. PubMed ID: 25269274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiphoton fluorescence excitation in continuous-wave infrared optical traps.
    Zhang Z; Sonek GJ; Liang H; Berns MW; Tromberg BJ
    Appl Opt; 1998 May; 37(13):2766-73. PubMed ID: 18273222
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons.
    Fan GY; Fujisaki H; Miyawaki A; Tsay RK; Tsien RY; Ellisman MH
    Biophys J; 1999 May; 76(5):2412-20. PubMed ID: 10233058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Live cell ultraviolet microscopy: a comparison between two- and three-photon excitation.
    Balaji J; Desai R; Maiti S
    Microsc Res Tech; 2004 Jan; 63(1):67-71. PubMed ID: 14677135
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorescence imaging with two-photon evanescent wave excitation.
    Schapper F; Gonçalves JT; Oheim M
    Eur Biophys J; 2003 Nov; 32(7):635-43. PubMed ID: 12955359
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Correlative cathodoluminescence and near-infrared fluorescence imaging for bridging from nanometer to millimeter scale bioimaging.
    Niioka H; Fukushima S; Ichimiya M; Ashida M; Miyake J; Araki T; Hashimoto M
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i29. PubMed ID: 25359828
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An integrated single- and two-photon non-diffracting light-sheet microscope.
    Lau SC; Chiu HC; Zhao L; Zhao T; Loy MMT; Du S
    Rev Sci Instrum; 2018 Apr; 89(4):043701. PubMed ID: 29716382
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin.
    Masters BR; So PT; Gratton E
    Biophys J; 1997 Jun; 72(6):2405-12. PubMed ID: 9168018
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combined scanning optical coherence and two-photon-excited fluorescence microscopy.
    Beaurepaire E; Moreaux L; Amblard F; Mertz J
    Opt Lett; 1999 Jul; 24(14):969-71. PubMed ID: 18073912
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Resonant-scanning dual-color STED microscopy with ultrafast photon counting: A concise guide.
    Wu Y; Wu X; Toro L; Stefani E
    Methods; 2015 Oct; 88():48-56. PubMed ID: 26123183
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.