These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 18087695)

  • 1. Perception of structured optic flow and random visual motion in infants and adults: a high-density EEG study.
    van der Meer AL; Fallet G; van der Weel FR
    Exp Brain Res; 2008 Apr; 186(3):493-502. PubMed ID: 18087695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Longitudinal study of perception of structured optic flow and random visual motion in infants using high-density EEG.
    Agyei SB; Holth M; van der Weel FR; van der Meer AL
    Dev Sci; 2015 May; 18(3):436-51. PubMed ID: 25145649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Longitudinal study of preterm and full-term infants: High-density EEG analyses of cortical activity in response to visual motion.
    Agyei SB; van der Weel FR; van der Meer AL
    Neuropsychologia; 2016 Apr; 84():89-104. PubMed ID: 26852826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-density EEG study of differentiation between two speeds and directions of simulated optic flow in adults and infants.
    Vilhelmsen K; Agyei SB; van der Weel FRR; van der Meer ALH
    Psychophysiology; 2019 Jan; 56(1):e13281. PubMed ID: 30175487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Longitudinal study of looming in infants with high-density EEG.
    van der Meer AL; Svantesson M; van der Weel FR
    Dev Neurosci; 2012; 34(6):488-501. PubMed ID: 23258077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aging effects on visual evoked potentials (VEPs) for motion direction discrimination.
    Kavcic V; Martin T; Zalar B
    Int J Psychophysiol; 2013 Jul; 89(1):78-87. PubMed ID: 23721981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human cortical areas underlying the perception of optic flow: brain imaging studies.
    Greenlee MW
    Int Rev Neurobiol; 2000; 44():269-92. PubMed ID: 10605650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal aspects of visual perception in demyelinative diseases.
    Raz N; Shear-Yashuv G; Backner Y; Bick AS; Levin N
    J Neurol Sci; 2015 Oct; 357(1-2):235-9. PubMed ID: 26232085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatio-temporal tuning of coherent motion evoked responses in 4-6 month old infants and adults.
    Hou C; Gilmore RO; Pettet MW; Norcia AM
    Vision Res; 2009 Oct; 49(20):2509-17. PubMed ID: 19679146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-density EEG study of differences between three high speeds of simulated forward motion from optic flow in adult participants.
    Vilhelmsen K; van der Weel FR; van der Meer AL
    Front Syst Neurosci; 2015; 9():146. PubMed ID: 26578903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Potential VEP Biomarker for Mild Cognitive Impairment: Evidence from Selective Visual Deficit of Higher-Level Dorsal Pathway.
    Yamasaki T; Horie S; Ohyagi Y; Tanaka E; Nakamura N; Goto Y; Kanba S; Kira J; Tobimatsu S
    J Alzheimers Dis; 2016 May; 53(2):661-76. PubMed ID: 27232213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pattern- and motion-related visual evoked potentials in HIV-infected adults.
    Szanyi J; Kremlacek J; Kubova Z; Kuba M; Gebousky P; Kapla J; Szanyi J; Vit F; Langrova J
    Doc Ophthalmol; 2017 Feb; 134(1):45-55. PubMed ID: 28074347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motion-onset VEPs in dyslexia. Evidence for visual perceptual deficit.
    Schulte-Körne G; Bartling J; Deimel W; Remschmidt H
    Neuroreport; 2004 Apr; 15(6):1075-8. PubMed ID: 15076738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical processing of visual motion in young infants.
    Rosander K; Nyström P; Gredebäck G; von Hofsten C
    Vision Res; 2007 Jun; 47(12):1614-23. PubMed ID: 17449082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of cortical responses to optic flow.
    Gilmore RO; Hou C; Pettet MW; Norcia AM
    Vis Neurosci; 2007; 24(6):845-56. PubMed ID: 18093371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual evoked and event-related brain potentials in HIV-infected adults: a longitudinal study over 2.5 years.
    Szanyi J; Kremlacek J; Kubova Z; Kuba M; Gebousky P; Kapla J; Szanyi J; Vit F; Langrova J
    Doc Ophthalmol; 2019 Oct; 139(2):83-97. PubMed ID: 30993574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural dynamics underlying coherent motion perception in children and adults.
    Manning C; Kaneshiro B; Kohler PJ; Duta M; Scerif G; Norcia AM
    Dev Cogn Neurosci; 2019 Aug; 38():100670. PubMed ID: 31228678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is the motion system relatively spared in amblyopia? Evidence from cortical evoked responses.
    Kubová Z; Kuba M; Juran J; Blakemore C
    Vision Res; 1996 Jan; 36(1):181-90. PubMed ID: 8746252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The development of motion sensitivity during the first year of life.
    Hamer RD; Norcia AM
    Vision Res; 1994 Sep; 34(18):2387-402. PubMed ID: 7975278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perception of motion and qEEG activity in human adults.
    Cochin S; Barthelemy C; Lejeune B; Roux S; Martineau J
    Electroencephalogr Clin Neurophysiol; 1998 Oct; 107(4):287-95. PubMed ID: 9872446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.