These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 18087717)
21. Development of the enteropneust Ptychodera flava: ciliary bands and nervous system. Nielsen C; Hay-Schmidt A J Morphol; 2007 Jul; 268(7):551-70. PubMed ID: 17469131 [TBL] [Abstract][Full Text] [Related]
22. The function of the ophiuroid nerve ring: how a decentralized nervous system controls coordinated locomotion. Clark EG; Kanauchi D; Kano T; Aonuma H; Briggs DEG; Ishiguro A J Exp Biol; 2019 Jan; 222(Pt 2):. PubMed ID: 30464042 [TBL] [Abstract][Full Text] [Related]
23. Development of the five primary podia from the coeloms of a sea star larva: homology with the echinoid echinoderms and other deuterostomes. Morris VB; Selvakumaraswamy P; Whan R; Byrne M Proc Biol Sci; 2009 Apr; 276(1660):1277-84. PubMed ID: 19129140 [TBL] [Abstract][Full Text] [Related]
24. Scope for Developmental Plasticity of Feeding Larvae of a Holothuroid, Contrasted with Other Echinoderm Larvae. Strathmann RR Biol Bull; 2022 Feb; 242(1):1-15. PubMed ID: 35245160 [TBL] [Abstract][Full Text] [Related]
25. Electron Microscopic Observations on the Cortical Reaction of the Brittle-Star Amphipholis kochii Lütken, with Special Reference to its Vitelline Coat Modification as Revealed by the Surface Replica Method: (cortical reaction/fine structure/ophiuroid egg/surface replica). Yamashita M Dev Growth Differ; 1984; 26(2):177-189. PubMed ID: 37281942 [TBL] [Abstract][Full Text] [Related]
26. A brittle star is born: Ontogeny of luminous capabilities in Amphiura filiformis. Coubris C; Duchatelet L; Dupont S; Mallefet J PLoS One; 2024; 19(3):e0298185. PubMed ID: 38466680 [TBL] [Abstract][Full Text] [Related]
27. Gene expression profiling during the embryo-to-larva transition in the giant red sea urchin Gaitán-Espitia JD; Hofmann GE Ecol Evol; 2017 Apr; 7(8):2798-2811. PubMed ID: 28428870 [TBL] [Abstract][Full Text] [Related]
28. Evo-Devo in Ophiuroids: The Switch from Planktotrophy to Lecithotrophy in Selvakumaraswamy P; Byrne M Biol Bull; 2023 Jun; 244(3):164-176. PubMed ID: 38457674 [TBL] [Abstract][Full Text] [Related]
29. The complete mitochondrial genomes of the sea lily Gymnocrinus richeri and the feather star Phanogenia gracilis: signature nucleotide bias and unique nad4L gene rearrangement within crinoids. Scouras A; Smith MJ Mol Phylogenet Evol; 2006 May; 39(2):323-34. PubMed ID: 16359875 [TBL] [Abstract][Full Text] [Related]
30. Development of serotonin-like immunoreactivity in the embryos and larvae of nudibranch mollusks with emphasis on the structure and possible function of the apical sensory organ. Kempf SC; Page LR; Pires A J Comp Neurol; 1997 Sep; 386(3):507-28. PubMed ID: 9303432 [TBL] [Abstract][Full Text] [Related]
31. Development and neural organization of the tornaria larva of the Hawaiian hemichordate, Ptychodera flava. Nakajima Y; Humphreys T; Kaneko H; Tagawa K Zoolog Sci; 2004 Jan; 21(1):69-78. PubMed ID: 14745106 [TBL] [Abstract][Full Text] [Related]
32. De novo transcriptome of the European brittle star Amphiura filiformis pluteus larvae. Delroisse J; Ortega-Martinez O; Dupont S; Mallefet J; Flammang P Mar Genomics; 2015 Oct; 23():109-21. PubMed ID: 26044617 [TBL] [Abstract][Full Text] [Related]
33. A feather star is born: embryonic development and nervous system organization in the crinoid Mercurio S; Gattoni G; Scarì G; Ascagni M; Barzaghi B; Elphick MR; Croce JC; Schubert M; Benito-Gutiérrez E; Pennati R Open Biol; 2024 Aug; 14(8):240115. PubMed ID: 39165121 [TBL] [Abstract][Full Text] [Related]
34. Neural anatomy of echinoid early juveniles and comparison of nervous system organization in echinoderms. Formery L; Orange F; Formery A; Yaguchi S; Lowe CJ; Schubert M; Croce JC J Comp Neurol; 2021 Apr; 529(6):1135-1156. PubMed ID: 32841380 [TBL] [Abstract][Full Text] [Related]
36. Development of nervous systems to metamorphosis in feeding and non-feeding echinoid larvae, the transition from bilateral to radial symmetry. Katow H; Elia L; Byrne M Dev Genes Evol; 2009 Feb; 219(2):67-77. PubMed ID: 19031082 [TBL] [Abstract][Full Text] [Related]
37. Development of the larval nervous system of the sand dollar, Dendraster excentricus. Burke RD Cell Tissue Res; 1983; 229(1):145-54. PubMed ID: 6831540 [TBL] [Abstract][Full Text] [Related]
38. Development and distribution of the peptidergic system in larval and adult Patiriella: comparison of sea star bilateral and radial nervous systems. Byrne M; Cisternas P J Comp Neurol; 2002 Sep; 451(2):101-14. PubMed ID: 12209830 [TBL] [Abstract][Full Text] [Related]
39. The structure of the larval nervous system of Pisaster ochraceus (Echinodermata: Asteroidea). Burke RD J Morphol; 1983 Oct; 178(1):23-35. PubMed ID: 30075610 [TBL] [Abstract][Full Text] [Related]
40. Microscopic anatomy of the digestive system in normal and regenerating specimens of the brittlestar Amphipholis kochii. Frolova LT; Dolmatov IY Biol Bull; 2010 Jun; 218(3):303-16. PubMed ID: 20570853 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]