BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1071 related articles for article (PubMed ID: 18087726)

  • 1. Adhesion structures and their cytoskeleton-membrane interactions at podosomes of osteoclasts in culture.
    Akisaka T; Yoshida H; Suzuki R; Takama K
    Cell Tissue Res; 2008 Mar; 331(3):625-41. PubMed ID: 18087726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ruffled border and attachment regions of the apposing membrane of resorbing osteoclasts as visualized from the cytoplasmic face of the membrane.
    Akisaka T; Yoshida H; Suzuki R
    J Electron Microsc (Tokyo); 2006 Apr; 55(2):53-61. PubMed ID: 16775216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organization of cytoskeletal F-actin, G-actin, and gelsolin in the adhesion structures in cultured osteoclast.
    Akisaka T; Yoshida H; Inoue S; Shimizu K
    J Bone Miner Res; 2001 Jul; 16(7):1248-55. PubMed ID: 11450700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualization of structural organization of ventral membranes of sheared-open resorbing osteoclasts attached to apatite pellets.
    Akisaka T; Yoshida A
    Cell Tissue Res; 2015 May; 360(2):347-62. PubMed ID: 25582780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fimbrin in podosomes of monocyte-derived osteoclasts.
    Babb SG; Matsudaira P; Sato M; Correia I; Lim SS
    Cell Motil Cytoskeleton; 1997; 37(4):308-25. PubMed ID: 9258504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A preparation technique for observing cytoskeletons by high resolution scanning electron microscopy.
    Mitsushima A; Katsumoto T
    J Submicrosc Cytol Pathol; 1990 Oct; 22(4):591-9. PubMed ID: 2282643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Actin cytoskeletal organisation in osteoclasts: a model to decipher transmigration and matrix degradation.
    Saltel F; Chabadel A; Bonnelye E; Jurdic P
    Eur J Cell Biol; 2008 Sep; 87(8-9):459-68. PubMed ID: 18294724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Podosome and sealing zone: specificity of the osteoclast model.
    Jurdic P; Saltel F; Chabadel A; Destaing O
    Eur J Cell Biol; 2006 Apr; 85(3-4):195-202. PubMed ID: 16546562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of the osteoclast cytoskeleton during the resorption cycle in vitro.
    Lakkakorpi PT; Väänänen HK
    J Bone Miner Res; 1991 Aug; 6(8):817-26. PubMed ID: 1664645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clathrin sheets on the protoplasmic surface of ventral membranes of osteoclasts in culture.
    Akisaka T; Yoshida H; Suzuki R; Shimizu K; Takama K
    J Electron Microsc (Tokyo); 2003; 52(6):535-43. PubMed ID: 14756241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adhesion patterns and cytoskeleton of rabbit osteoclasts on bone slices and glass.
    Turksen K; Kanehisa J; Opas M; Heersche JN; Aubin JE
    J Bone Miner Res; 1988 Aug; 3(4):389-400. PubMed ID: 3223354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunofluorescence evidence for cytoskeletal rearrangement accompanying pigment redistribution in goldfish xanthophores.
    Walker GR; Taylor JD; Tchen TT
    Cell Motil Cytoskeleton; 1989; 14(4):458-68. PubMed ID: 2560413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coexistence of tubulin, vimentin and F-actin in Leydig cells in vitro detected by double immunofluorescence studies.
    Bilińska B
    Cytobios; 1993; 74(296):15-21. PubMed ID: 8330484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the relation between distinct components of the cytoskeleton: an epitope shared by intermediate filaments, microfilaments and cytoplasmic foci.
    Turner JR; Tartakoff AM
    Eur J Cell Biol; 1990 Apr; 51(2):259-64. PubMed ID: 1693574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The architecture of the adhesive apparatus of cultured osteoclasts: from podosome formation to sealing zone assembly.
    Luxenburg C; Geblinger D; Klein E; Anderson K; Hanein D; Geiger B; Addadi L
    PLoS One; 2007 Jan; 2(1):e179. PubMed ID: 17264882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Caldesmon is necessary for maintaining the actin and intermediate filaments in cultured bladder smooth muscle cells.
    Deng M; Mohanan S; Polyak E; Chacko S
    Cell Motil Cytoskeleton; 2007 Dec; 64(12):951-65. PubMed ID: 17868135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coordination of microtubules and the actin cytoskeleton is important in osteoclast function, but calcitonin disrupts sealing zones without affecting microtubule networks.
    Okumura S; Mizoguchi T; Sato N; Yamaki M; Kobayashi Y; Yamauchi H; Ozawa H; Udagawa N; Takahashi N
    Bone; 2006 Oct; 39(4):684-93. PubMed ID: 16774853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface distribution of heterogenous clathrin assemblies in resorbing osteoclasts.
    Akisaka T; Yoshida A
    Exp Cell Res; 2021 Feb; 399(1):112433. PubMed ID: 33359468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The distribution of podosomes in osteoclasts cultured on bone laminae: effect of retinol.
    Zambonin-Zallone A; Teti A; Carano A; Marchisio PC
    J Bone Miner Res; 1988 Oct; 3(5):517-23. PubMed ID: 3195364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the three-dimensional organization of unextracted and Triton-extracted human neutrophilic polymorphonuclear leukocytes.
    Pryzwansky KB; Schliwa M; Porter KR
    Eur J Cell Biol; 1983 Mar; 30(1):112-25. PubMed ID: 6682762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 54.