These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 18087742)

  • 1. Ambulatory measurement of shoulder and elbow kinematics through inertial and magnetic sensors.
    Cutti AG; Giovanardi A; Rocchi L; Davalli A; Sacchetti R
    Med Biol Eng Comput; 2008 Feb; 46(2):169-78. PubMed ID: 18087742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upper limb joint kinematics using wearable magnetic and inertial measurement units: an anatomical calibration procedure based on bony landmark identification.
    Picerno P; Caliandro P; Iacovelli C; Simbolotti C; Crabolu M; Pani D; Vannozzi G; Reale G; Rossini PM; Padua L; Cereatti A
    Sci Rep; 2019 Oct; 9(1):14449. PubMed ID: 31594964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shoulder and elbow joint angle tracking with inertial sensors.
    El-Gohary M; McNames J
    IEEE Trans Biomed Eng; 2012 Sep; 59(9):2635-41. PubMed ID: 22911538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of normative angular joint kinematics during two functional upper limb tasks.
    Valevicius AM; Boser QA; Lavoie EB; Chapman CS; Pilarski PM; Hebert JS; Vette AH
    Gait Posture; 2019 Mar; 69():176-186. PubMed ID: 30769260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wearable Inertial Sensors Allow for Quantitative Assessment of Shoulder and Elbow Kinematics in a Cadaveric Knee Arthroscopy Model.
    Rose M; Curtze C; O'Sullivan J; El-Gohary M; Crawford D; Friess D; Brady JM
    Arthroscopy; 2017 Dec; 33(12):2110-2116. PubMed ID: 28866347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new way of assessing arm function in activity using kinematic Exposure Variation Analysis and portable inertial sensors--A validity study.
    Ertzgaard P; Öhberg F; Gerdle B; Grip H
    Man Ther; 2016 Feb; 21():241-9. PubMed ID: 26456185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of Upper-Limb Inertial Measurement Unit Data to Joint Angles: A Systematic Review.
    Fang Z; Woodford S; Senanayake D; Ackland D
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First in vivo assessment of "Outwalk": a novel protocol for clinical gait analysis based on inertial and magnetic sensors.
    Ferrari A; Cutti AG; Garofalo P; Raggi M; Heijboer M; Cappello A; Davalli A
    Med Biol Eng Comput; 2010 Jan; 48(1):1-15. PubMed ID: 19911215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of multiple wearable inertial sensors in upper limb motion tracking.
    Zhou H; Stone T; Hu H; Harris N
    Med Eng Phys; 2008 Jan; 30(1):123-33. PubMed ID: 17251049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upper limb joint angle measurement in occupational health.
    Álvarez D; Alvarez JC; González RC; López AM
    Comput Methods Biomech Biomed Engin; 2016; 19(2):159-70. PubMed ID: 25573165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compensation for interaction torques during single- and multijoint limb movement.
    Gribble PL; Ostry DJ
    J Neurophysiol; 1999 Nov; 82(5):2310-26. PubMed ID: 10561408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The validation of a low-cost inertial measurement unit system to quantify simple and complex upper-limb joint angles.
    Goreham JA; MacLean KFE; Ladouceur M
    J Biomech; 2022 Mar; 134():111000. PubMed ID: 35217243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studying upper-limb kinematics using inertial sensors: a cross-sectional study.
    Roldán-Jiménez C; Cuesta-Vargas AI
    BMC Res Notes; 2015 Oct; 8():532. PubMed ID: 26433573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in movement variability and task performance during a fatiguing repetitive pointing task.
    Yang C; Bouffard J; Srinivasan D; Ghayourmanesh S; Cantú H; Begon M; Côté JN
    J Biomech; 2018 Jul; 76():212-219. PubMed ID: 29908654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Range of motion of shoulder and elbow in activities of daily life in 3D motion analysis].
    Raiss P; Rettig O; Wolf S; Loew M; Kasten P
    Z Orthop Unfall; 2007; 145(4):493-8. PubMed ID: 17912671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concurrent validation of Xsens MVN measurement of lower limb joint angular kinematics.
    Zhang JT; Novak AC; Brouwer B; Li Q
    Physiol Meas; 2013 Aug; 34(8):N63-9. PubMed ID: 23893094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 25 years of lower limb joint kinematics by using inertial and magnetic sensors: A review of methodological approaches.
    Picerno P
    Gait Posture; 2017 Jan; 51():239-246. PubMed ID: 27833057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relationship of elbow alignment and kinematics on shoulder torque during the softball pitch: a biomechanical analysis of female softball pitchers.
    Scarborough DM; McCunney RC; Berkson EM; Oh LS
    J Shoulder Elbow Surg; 2019 Feb; 28(2):357-364. PubMed ID: 30292396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 'Outwalk': a protocol for clinical gait analysis based on inertial and magnetic sensors.
    Cutti AG; Ferrari A; Garofalo P; Raggi M; Cappello A; Ferrari A
    Med Biol Eng Comput; 2010 Jan; 48(1):17-25. PubMed ID: 19911214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The shoulder and elbow joints and right and left sides demonstrate similar joint position sense.
    King J; Harding E; Karduna A
    J Mot Behav; 2013; 45(6):479-86. PubMed ID: 24079516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.