These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 18087743)

  • 41. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients.
    Daly JJ; Ruff RL
    ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A low-cost virtual coach for 2D video-based compensation assessment of upper extremity rehabilitation exercises.
    Cóias AR; Lee MH; Bernardino A
    J Neuroeng Rehabil; 2022 Jul; 19(1):83. PubMed ID: 35902897
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mirror Therapy Using Gesture Recognition for Upper Limb Function, Neck Discomfort, and Quality of Life After Chronic Stroke: A Single-Blind Randomized Controlled Trial.
    Choi HS; Shin WS; Bang DH
    Med Sci Monit; 2019 May; 25():3271-3278. PubMed ID: 31050660
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inertial measurements of upper limb motion.
    Zhou H; Hu H; Tao Y
    Med Biol Eng Comput; 2006 Jun; 44(6):479-87. PubMed ID: 16937199
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Upper-Limb Function Assessment Using VBBTs for Stroke Patients.
    Cho S; Kim WS; Paik NJ; Bang H
    IEEE Comput Graph Appl; 2016; 36(1):70-8. PubMed ID: 25585413
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Randomized trial of a robotic assistive device for the upper extremity during early inpatient stroke rehabilitation.
    Masiero S; Armani M; Ferlini G; Rosati G; Rossi A
    Neurorehabil Neural Repair; 2014 May; 28(4):377-86. PubMed ID: 24316679
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bilateral and unilateral movement training on upper limb function in chronic stroke patients: A TMS study.
    Summers JJ; Kagerer FA; Garry MI; Hiraga CY; Loftus A; Cauraugh JH
    J Neurol Sci; 2007 Jan; 252(1):76-82. PubMed ID: 17134723
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Technology improves upper extremity rehabilitation.
    Kowalczewski J; Prochazka A
    Prog Brain Res; 2011; 192():147-59. PubMed ID: 21763524
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A neural tracking and motor control approach to improve rehabilitation of upper limb movements.
    Goffredo M; Bernabucci I; Schmid M; Conforto S
    J Neuroeng Rehabil; 2008 Feb; 5():5. PubMed ID: 18251996
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Robotic-assisted rehabilitation of the upper limb after acute stroke.
    Masiero S; Celia A; Rosati G; Armani M
    Arch Phys Med Rehabil; 2007 Feb; 88(2):142-9. PubMed ID: 17270510
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Design and Interaction Control of a New Bilateral Upper-Limb Rehabilitation Device.
    Miao Q; Zhang M; Wang Y; Xie SQ
    J Healthc Eng; 2017; 2017():7640325. PubMed ID: 29104747
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Participant perceptions of use of CyWee Z as adjunct to rehabilitation of upper-limb function following stroke.
    Hale LA; Satherley JA; McMillan NJ; Milosavljevic S; Hijmans JM; King MJ
    J Rehabil Res Dev; 2012; 49(4):623-34. PubMed ID: 22773264
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Asymmetric training using virtual reality reflection equipment and the enhancement of upper limb function in stroke patients: a randomized controlled trial.
    Lee D; Lee M; Lee K; Song C
    J Stroke Cerebrovasc Dis; 2014 Jul; 23(6):1319-26. PubMed ID: 24468068
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of Exergame on Patients' Balance and Upper Limb Motor Function after Stroke: A Randomized Controlled Trial.
    Henrique PPB; Colussi EL; De Marchi ACB
    J Stroke Cerebrovasc Dis; 2019 Aug; 28(8):2351-2357. PubMed ID: 31204204
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy.
    Sugar TG; He J; Koeneman EJ; Koeneman JB; Herman R; Huang H; Schultz RS; Herring DE; Wanberg J; Balasubramanian S; Swenson P; Ward JA
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):336-46. PubMed ID: 17894266
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Using commercial video games for upper limb stroke rehabilitation: is this the way of the future?
    Pietrzak E; Cotea C; Pullman S
    Top Stroke Rehabil; 2014; 21(2):152-62. PubMed ID: 24710975
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cardiovascular fitness is improved post-stroke with upper-limb Wii-based Movement Therapy but not dose-matched constraint therapy.
    Trinh T; Scheuer SE; Thompson-Butel AG; Shiner CT; McNulty PA
    Top Stroke Rehabil; 2016 Jun; 23(3):208-16. PubMed ID: 26907502
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Motor impairment evaluation for upper limb in stroke patients on the basis of a microsensor.
    Huang S; Luo C; Ye S; Liu F; Xie B; Wang C; Yang L; Huang Z; Wu J
    Int J Rehabil Res; 2012 Jun; 35(2):161-9. PubMed ID: 22470053
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An interactive motion-tracking system for home-based assessing and training reach-to-target tasks in stroke survivors-a preliminary study.
    Fan W; Zhang Y; Wang QM; Bai Y; Wu Y
    Med Biol Eng Comput; 2020 Jul; 58(7):1529-1547. PubMed ID: 32405968
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bilateral upper-limb rehabilitation after stroke using a movement-based game controller.
    Hijmans JM; Hale LA; Satherley JA; McMillan NJ; King MJ
    J Rehabil Res Dev; 2011; 48(8):1005-13. PubMed ID: 22068375
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.