These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 18087743)
61. Post-stroke robotic training of the upper limb in the early rehabilitation phase. Masiero S; Rosati G; Valarini S; Rossi A Funct Neurol; 2009; 24(4):203-6. PubMed ID: 20412726 [TBL] [Abstract][Full Text] [Related]
62. Predictors of activities of daily living outcomes after upper limb robot-assisted therapy in subacute stroke patients. Franceschini M; Goffredo M; Pournajaf S; Paravati S; Agosti M; De Pisi F; Galafate D; Posteraro F PLoS One; 2018; 13(2):e0193235. PubMed ID: 29466440 [TBL] [Abstract][Full Text] [Related]
63. Aerobic exercise and consecutive task-specific training (AExaCTT) for upper limb recovery after stroke: A randomized controlled pilot study. Valkenborghs SR; van Vliet P; Nilsson M; Zalewska K; Visser MM; Erickson KI; Callister R Physiother Res Int; 2019 Jul; 24(3):e1775. PubMed ID: 30942552 [TBL] [Abstract][Full Text] [Related]
64. Rehabilitation of reaching after stroke: comparing 2 training protocols utilizing trunk restraint. Thielman G; Kaminski T; Gentile AM Neurorehabil Neural Repair; 2008; 22(6):697-705. PubMed ID: 18971384 [TBL] [Abstract][Full Text] [Related]
65. Effector force requirements to enable robotic systems to provide assisted exercise in people with upper limb impairment after stroke. Jackson AE; Culmer PR; Levesley MC; Cozens JA; Makower SG; Bhakta BB IEEE Int Conf Rehabil Robot; 2011; 2011():5975391. PubMed ID: 22275595 [TBL] [Abstract][Full Text] [Related]
66. Repetitive facilitative exercise improves upper limb function in patients with subacute stroke. Harris JE J Physiother; 2013 Sep; 59(3):208. PubMed ID: 23896337 [No Abstract] [Full Text] [Related]
68. Development of digitized apparatus for upper limb rehabilitation training. Hwang YS; Chen SC; Chen CC; Chen WL; Shih YY; Chen YL Technol Health Care; 2013; 21(6):571-9. PubMed ID: 24284546 [TBL] [Abstract][Full Text] [Related]
69. Home-Based Rehabilitation System for Stroke Survivors: A Clinical Evaluation. Ghorbel E; Baptista R; Shabayek A; Aouada D; Oramaeche MG; Lago JO; Fernandez LO J Med Syst; 2020 Oct; 44(12):203. PubMed ID: 33111159 [TBL] [Abstract][Full Text] [Related]
70. Primed Physical Therapy Enhances Recovery of Upper Limb Function in Chronic Stroke Patients. Ackerley SJ; Byblow WD; Barber PA; MacDonald H; McIntyre-Robinson A; Stinear CM Neurorehabil Neural Repair; 2016 May; 30(4):339-48. PubMed ID: 26180053 [TBL] [Abstract][Full Text] [Related]
71. Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial. Saposnik G; Cohen LG; Mamdani M; Pooyania S; Ploughman M; Cheung D; Shaw J; Hall J; Nord P; Dukelow S; Nilanont Y; De Los Rios F; Olmos L; Levin M; Teasell R; Cohen A; Thorpe K; Laupacis A; Bayley M; Lancet Neurol; 2016 Sep; 15(10):1019-27. PubMed ID: 27365261 [TBL] [Abstract][Full Text] [Related]
72. Effects of action observation therapy on upper extremity function, daily activities and motion evoked potential in cerebral infarction patients. Fu J; Zeng M; Shen F; Cui Y; Zhu M; Gu X; Sun Y Medicine (Baltimore); 2017 Oct; 96(42):e8080. PubMed ID: 29049194 [TBL] [Abstract][Full Text] [Related]
73. Remotely controlled cycling exercise system for home-based telerehabilitation. Finkelstein J; Jeong Ic Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7310-3. PubMed ID: 24111433 [TBL] [Abstract][Full Text] [Related]
74. What is the feasibility and observed effect of two implementation packages for stroke rehabilitation therapists implementing upper limb guidelines? A cluster controlled feasibility study. Jolliffe L; Hoffmann T; Churilov L; Lannin NA BMJ Open Qual; 2020 May; 9(2):. PubMed ID: 32448781 [TBL] [Abstract][Full Text] [Related]
75. Viability of using a computer tablet to monitor an upper limb home exercise program in stroke. Levy T; Killington M; Lannin N; Crotty M Physiother Theory Pract; 2021 Feb; 37(2):331-341. PubMed ID: 31172867 [No Abstract] [Full Text] [Related]
76. Influence of New Technologies on Post-Stroke Rehabilitation: A Comparison of Armeo Spring to the Kinect System. Adomavičienė A; Daunoravičienė K; Kubilius R; Varžaitytė L; Raistenskis J Medicina (Kaunas); 2019 Apr; 55(4):. PubMed ID: 30970655 [TBL] [Abstract][Full Text] [Related]
77. Increasing upper limb training intensity in chronic stroke using embodied virtual reality: a pilot study. Perez-Marcos D; Chevalley O; Schmidlin T; Garipelli G; Serino A; Vuadens P; Tadi T; Blanke O; Millán JDR J Neuroeng Rehabil; 2017 Nov; 14(1):119. PubMed ID: 29149855 [TBL] [Abstract][Full Text] [Related]
78. Modified constraint-induced therapy extension: using remote technologies to improve function. Page SJ; Levine P Arch Phys Med Rehabil; 2007 Jul; 88(7):922-7. PubMed ID: 17601475 [TBL] [Abstract][Full Text] [Related]
79. An Innovative STRoke Interactive Virtual thErapy (STRIVE) Online Platform for Community-Dwelling Stroke Survivors: A Randomized Controlled Trial. Johnson L; Bird ML; Muthalib M; Teo WP Arch Phys Med Rehabil; 2020 Jul; 101(7):1131-1137. PubMed ID: 32283048 [TBL] [Abstract][Full Text] [Related]
80. The impact of transcranial direct current stimulation (tDCS) combined with modified constraint-induced movement therapy (mCIMT) on upper limb function in chronic stroke: a double-blind randomized controlled trial. Rocha S; Silva E; Foerster Á; Wiesiolek C; Chagas AP; Machado G; Baltar A; Monte-Silva K Disabil Rehabil; 2016; 38(7):653-60. PubMed ID: 26061222 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]