BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

559 related articles for article (PubMed ID: 18088328)

  • 1. Short-term responses of leaf growth rate to water deficit scale up to whole-plant and crop levels: an integrated modelling approach in maize.
    Chenu K; Chapman SC; Hammer GL; McLean G; Salah HB; Tardieu F
    Plant Cell Environ; 2008 Mar; 31(3):378-91. PubMed ID: 18088328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Are source and sink strengths genetically linked in maize plants subjected to water deficit? A QTL study of the responses of leaf growth and of Anthesis-Silking Interval to water deficit.
    Welcker C; Boussuge B; Bencivenni C; Ribaut JM; Tardieu F
    J Exp Bot; 2007; 58(2):339-49. PubMed ID: 17130185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dealing with the genotype x environment interaction via a modelling approach: a comparison of QTLs of maize leaf length or width with QTLs of model parameters.
    Reymond M; Muller B; Tardieu F
    J Exp Bot; 2004 Nov; 55(407):2461-72. PubMed ID: 15286140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic variability for leaf growth rate and duration under water deficit in sunflower: analysis of responses at cell, organ, and plant level.
    Pereyra-Irujo GA; Velázquez L; Lechner L; Aguirrezábal LA
    J Exp Bot; 2008; 59(8):2221-32. PubMed ID: 18448477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are ABA, ethylene or their interaction involved in the response of leaf growth to soil water deficit? An analysis using naturally occurring variation or genetic transformation of ABA production in maize.
    Voisin AS; Reidy B; Parent B; Rolland G; Redondo E; Gerentes D; Tardieu F; Muller B
    Plant Cell Environ; 2006 Sep; 29(9):1829-40. PubMed ID: 16913872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis and modelling of effects of leaf rust and Septoria tritici blotch on wheat growth.
    Robert C; Bancal MO; Nicolas P; Lannou C; Ney B
    J Exp Bot; 2004 May; 55(399):1079-94. PubMed ID: 15073221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rice leaf growth and water potential are resilient to evaporative demand and soil water deficit once the effects of root system are neutralized.
    Parent B; Suard B; Serraj R; Tardieu F
    Plant Cell Environ; 2010 Aug; 33(8):1256-67. PubMed ID: 20302604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xylem tension affects growth-induced water potential and daily elongation of maize leaves.
    Tang AC; Boyer JS
    J Exp Bot; 2008; 59(4):753-64. PubMed ID: 18349050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-steady-state, non-uniform transpiration rate and leaf anatomy effects on the progressive stable isotope enrichment of leaf water along monocot leaves.
    Ogée J; Cuntz M; Peylin P; Bariac T
    Plant Cell Environ; 2007 Apr; 30(4):367-87. PubMed ID: 17324225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Root pressurization affects growth-induced water potentials and growth in dehydrated maize leaves.
    Tang AC; Boyer JS
    J Exp Bot; 2003 Nov; 54(392):2479-88. PubMed ID: 14512379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicted versus measured photosynthetic water-use efficiency of crop stands under dynamically changing field environments.
    Xu LK; Hsiao TC
    J Exp Bot; 2004 Nov; 55(407):2395-411. PubMed ID: 15448179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stay wet or else: three ways in which plants can adjust hydraulically to their environment.
    Maseda PH; Fernández RJ
    J Exp Bot; 2006; 57(15):3963-77. PubMed ID: 17079697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The short-term growth response to salt of the developing barley leaf.
    Fricke W; Akhiyarova G; Wei W; Alexandersson E; Miller A; Kjellbom PO; Richardson A; Wojciechowski T; Schreiber L; Veselov D; Kudoyarova G; Volkov V
    J Exp Bot; 2006; 57(5):1079-95. PubMed ID: 16513814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elevated CO2 effects on canopy and soil water flux parameters measured using a large chamber in crops grown with free-air CO2 enrichment.
    Burkart S; Manderscheid R; Wittich KP; Löpmeier FJ; Weigel HJ
    Plant Biol (Stuttg); 2011 Mar; 13(2):258-69. PubMed ID: 21309972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaf growth rate per unit thermal time follows QTL-dependent daily patterns in hundreds of maize lines under naturally fluctuating conditions.
    Sadok W; Naudin P; Boussuge B; Muller B; Welcker C; Tardieu F
    Plant Cell Environ; 2007 Feb; 30(2):135-46. PubMed ID: 17238905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops.
    Hammer GL; van Oosterom E; McLean G; Chapman SC; Broad I; Harland P; Muchow RC
    J Exp Bot; 2010 May; 61(8):2185-202. PubMed ID: 20400531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methane emissions from six crop species exposed to three components of global climate change: temperature, ultraviolet-B radiation and water stress.
    Qaderi MM; Reid DM
    Physiol Plant; 2009 Oct; 137(2):139-47. PubMed ID: 19678898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The components of crop productivity: measuring and modeling plant metabolism.
    Bugbee B
    ASGSB Bull; 1995 Oct; 8(2):93-104. PubMed ID: 11538555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-scale phenotyping of leaf expansion in response to environmental changes: the whole is more than the sum of parts.
    Granier C; Tardieu F
    Plant Cell Environ; 2009 Sep; 32(9):1175-84. PubMed ID: 19210637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The hydraulic conductance of Fraxinus ornus leaves is constrained by soil water availability and coordinated with gas exchange rates.
    Gortan E; Nardini A; Gascó A; Salleo S
    Tree Physiol; 2009 Apr; 29(4):529-39. PubMed ID: 19203976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.