BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 18088379)

  • 1. An update on the mechanisms of the psychostimulant effects of caffeine.
    Ferré S
    J Neurochem; 2008 May; 105(4):1067-79. PubMed ID: 18088379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the central ascending neurotransmitter systems in the psychostimulant effects of caffeine.
    Ferré S
    J Alzheimers Dis; 2010; 20 Suppl 1(Suppl 1):S35-49. PubMed ID: 20182056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adenosine receptor-mediated modulation of dopamine release in the nucleus accumbens depends on glutamate neurotransmission and N-methyl-D-aspartate receptor stimulation.
    Quarta D; Borycz J; Solinas M; Patkar K; Hockemeyer J; Ciruela F; Lluis C; Franco R; Woods AS; Goldberg SR; Ferré S
    J Neurochem; 2004 Nov; 91(4):873-80. PubMed ID: 15525341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adenosine A1-A2A receptor heteromers: new targets for caffeine in the brain.
    Ferre S; Ciruela F; Borycz J; Solinas M; Quarta D; Antoniou K; Quiroz C; Justinova Z; Lluis C; Franco R; Goldberg SR
    Front Biosci; 2008 Jan; 13():2391-9. PubMed ID: 17981720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-sensitization between the motor activating effects of bromocriptine and caffeine: role of adenosine A(2A) receptors.
    Fenu S; Cauli O; Morelli M
    Behav Brain Res; 2000 Sep; 114(1-2):97-105. PubMed ID: 10996051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of adenosinergic receptor system in an animal model of tardive dyskinesia and associated behavioural, biochemical and neurochemical changes.
    Bishnoi M; Chopra K; Kulkarni SK
    Eur J Pharmacol; 2006 Dec; 552(1-3):55-66. PubMed ID: 17064683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the effects of caffeine and carbamazepine on striatal dopamine release by in vivo microdialysis.
    Okada M; Kiryu K; Kawata Y; Mizuno K; Wada K; Tasaki H; Kaneko S
    Eur J Pharmacol; 1997 Feb; 321(2):181-8. PubMed ID: 9063686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurotransmitter receptor heteromers and their integrative role in 'local modules': the striatal spine module.
    Ferré S; Agnati LF; Ciruela F; Lluis C; Woods AS; Fuxe K; Franco R
    Brain Res Rev; 2007 Aug; 55(1):55-67. PubMed ID: 17408563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of caffeine on striatal neurotransmission: focus on cannabinoid CB1 receptors.
    Rossi S; De Chiara V; Musella A; Mataluni G; Sacchetti L; Siracusano A; Bernardi G; Usiello A; Centonze D
    Mol Nutr Food Res; 2010 Apr; 54(4):525-31. PubMed ID: 20087854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role and regulation of adenosine in the central nervous system.
    Dunwiddie TV; Masino SA
    Annu Rev Neurosci; 2001; 24():31-55. PubMed ID: 11283304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adenosine receptor blockade reverses hypophagia and enhances locomotor activity of dopamine-deficient mice.
    Kim DS; Palmiter RD
    Proc Natl Acad Sci U S A; 2003 Feb; 100(3):1346-51. PubMed ID: 12538862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caffeine-mediated presynaptic long-term potentiation in hippocampal CA1 pyramidal neurons.
    Martín ED; Buño W
    J Neurophysiol; 2003 Jun; 89(6):3029-38. PubMed ID: 12783948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subchronic caffeine administration sensitizes rats to the motor-activating effects of dopamine D(1) and D(2) receptor agonists.
    Cauli O; Morelli M
    Psychopharmacology (Berl); 2002 Jul; 162(3):246-54. PubMed ID: 12122482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dopaminergic mechanism for caffeine-produced cocaine seeking in rats.
    Green TA; Schenk S
    Neuropsychopharmacology; 2002 Apr; 26(4):422-30. PubMed ID: 11927167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying the molecular structure of behavior: separate effects of caffeine, cocaine, and adenosine agonists on interresponse times and lever-press durations.
    Newland MC
    Behav Pharmacol; 1997 Feb; 8(1):1-16. PubMed ID: 9832996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DARPP chocolate: a caffeinated morsel of striatal signaling.
    Bastia E; Schwarzschild MA
    Sci STKE; 2003 Jan; 2003(165):PE2. PubMed ID: 12527819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavioral characterization of caffeine and adenosine agonists during chronic caffeine exposure.
    Newland MC; Brown K
    Behav Pharmacol; 1997 Feb; 8(1):17-30. PubMed ID: 9832997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Caffeine and the dopaminergic system.
    Cauli O; Morelli M
    Behav Pharmacol; 2005 Mar; 16(2):63-77. PubMed ID: 15767841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of methylmercury on motor activity are sex- and age-dependent, and modulated by genetic deletion of adenosine receptors and caffeine administration.
    Björklund O; Kahlström J; Salmi P; Ogren SO; Vahter M; Chen JF; Fredholm BB; Daré E
    Toxicology; 2007 Nov; 241(3):119-33. PubMed ID: 17920182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Caffeine modulates P50 auditory sensory gating in healthy subjects.
    Ghisolfi ES; Schuch A; Strimitzer IM; Luersen G; Martins FF; Ramos FL; Becker J; Lara DR
    Eur Neuropsychopharmacol; 2006 Apr; 16(3):204-10. PubMed ID: 16278075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.