These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 18089077)

  • 21. Ocellar structure and neural innervation in the honeybee.
    Hung YS; Ibbotson MR
    Front Neuroanat; 2014; 8():6. PubMed ID: 24600354
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The mapping of visual space by dragonfly lateral ocelli.
    Berry R; van Kleef J; Stange G
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 May; 193(5):495-513. PubMed ID: 17273849
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Visual summation in night-flying sweat bees: a theoretical study.
    Theobald JC; Greiner B; Wcislo WT; Warrant EJ
    Vision Res; 2006 Jul; 46(14):2298-309. PubMed ID: 16488460
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visual ecology of Indian carpenter bees II: adaptations of eyes and ocelli to nocturnal and diurnal lifestyles.
    Somanathan H; Kelber A; Borges RM; Wallén R; Warrant EJ
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Jun; 195(6):571-83. PubMed ID: 19363615
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regional differences in the preferred e-vector orientation of honeybee ocellar photoreceptors.
    Ogawa Y; Ribi W; Zeil J; Hemmi JM
    J Exp Biol; 2017 May; 220(Pt 9):1701-1708. PubMed ID: 28213397
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrastructure of dorsal ocelli of the short-faced scorpionfly Panorpodes kuandianensis (Mecoptera: Panorpodidae).
    Chen Q; Hua B
    Micron; 2014 Apr; 59():8-16. PubMed ID: 24530359
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using micro-CT techniques to explore the role of sex and hair in the functional morphology of bumblebee (Bombus terrestris) ocelli.
    Wilby D; Aarts T; Tichit P; Bodey A; Rau C; Taylor G; Baird E
    Vision Res; 2019 May; 158():100-108. PubMed ID: 30826353
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ocellar structure of African and Australian desert ants.
    Penmetcha B; Ogawa Y; Ribi WA; Narendra A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2019 Oct; 205(5):699-706. PubMed ID: 31273454
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nocturnal insects use optic flow for flight control.
    Baird E; Kreiss E; Wcislo W; Warrant E; Dacke M
    Biol Lett; 2011 Aug; 7(4):499-501. PubMed ID: 21307047
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Visual sensitivity in the crepuscular owl butterfly Caligo memnon and the diurnal blue morpho Morpho peleides: a clue to explain the evolution of nocturnal apposition eyes?
    Frederiksen R; Warrant EJ
    J Exp Biol; 2008 Mar; 211(Pt 6):844-51. PubMed ID: 18310109
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flight control and landing precision in the nocturnal bee Megalopta is robust to large changes in light intensity.
    Baird E; Fernandez DC; Wcislo WT; Warrant EJ
    Front Physiol; 2015; 6():305. PubMed ID: 26578977
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-dimensional visualization of ocellar interneurons of the orchid bee Euglossa imperialis using micro X-ray computed tomography.
    Ribi W; Zeil J
    J Comp Neurol; 2017 Dec; 525(17):3581-3595. PubMed ID: 28608425
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oceili: a celestial compass in the desert ant cataglyphis.
    Fent K; Wehner R
    Science; 1985 Apr; 228(4696):192-4. PubMed ID: 17779641
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The spectral sensitivities of the dorsal ocelli of cockroaches and honeybees; an electrophysiological study.
    GOLDSMITH TH; RUCK PR
    J Gen Physiol; 1958 Jul; 41(6):1171-85. PubMed ID: 13563806
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diversity and common themes in the organization of ocelli in Hymenoptera, Odonata and Diptera.
    Ribi W; Zeil J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 May; 204(5):505-517. PubMed ID: 29582137
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flight performance in night-flying sweat bees suffers at low light levels.
    Theobald JC; Coates MM; Wcislo WT; Warrant EJ
    J Exp Biol; 2007 Nov; 210(Pt 22):4034-42. PubMed ID: 17981871
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Learning and navigation of hornets: role of the various light perceiving organs.
    Kirshboim S; Ishay JS
    Physiol Chem Phys Med NMR; 2001; 33(2):175-86. PubMed ID: 12002691
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The fine structure of the ocelli of Triatoma infestans (Hemiptera: Reduviidae).
    Insausti TC; Lazzari CR
    Tissue Cell; 2002 Dec; 34(6):437-49. PubMed ID: 12441096
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Behavioural environments and niche construction: the evolution of dim-light foraging in bees.
    Wcislo WT; Tierney SM
    Biol Rev Camb Philos Soc; 2009 Feb; 84(1):19-37. PubMed ID: 19046401
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Floral colour signal increases short-range detectability of a sexually deceptive orchid to its bee pollinator.
    Streinzer M; Paulus HF; Spaethe J
    J Exp Biol; 2009 May; 212(Pt 9):1365-70. PubMed ID: 19376957
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.