BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 18089130)

  • 1. Skeletal adaptations for forwards and sideways walking in three species of decapod crustaceans.
    Vidal-Gadea AG; Rinehart MD; Belanger JH
    Arthropod Struct Dev; 2008 Mar; 37(2):95-108. PubMed ID: 18089130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscular anatomy of the legs of the forward walking crab, Libinia emarginata (Decapoda, Brachyura, Majoidea).
    Vidal-Gadea AG; Belanger JH
    Arthropod Struct Dev; 2009 May; 38(3):179-94. PubMed ID: 19166968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The evolutionary transition to sideways-walking gaits in brachyurans was accompanied by a reduction in the number of motor neurons innervating proximal leg musculature.
    Vidal-Gadea AG; Belanger JH
    Arthropod Struct Dev; 2013 Nov; 42(6):443-454. PubMed ID: 23916868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degree of neuromuscular facilitation is correlated with contribution to walking in leg muscles of two species of crab.
    Dewell RB; Belanger JH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Dec; 194(12):1031-41. PubMed ID: 18830606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematics of walking in the hermit crab, Pagurus pollicarus.
    Chapple W
    Arthropod Struct Dev; 2012 Mar; 41(2):119-31. PubMed ID: 22321513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the similar effects of chemical reduction and electrical stimulation in walking leg nerve bundles of the spider crab.
    Marquis JK; Mautner HG
    Mol Pharmacol; 1975 May; 11(3):361-8. PubMed ID: 49847
    [No Abstract]   [Full Text] [Related]  

  • 7. The leg depressor and levator muscles in the squat lobster Munida quadrispina (Galatheidae) and the crayfish Procambarus clarkii (Astacidae) have multiple heads with potentially different functions.
    Antonse BL; Pau DH
    Brain Behav Evol; 2000 Aug; 56(2):63-85. PubMed ID: 11111134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Digging in sand crabs: coordination of joints in individual legs.
    Faulkes Z; Paul DH
    J Exp Biol; 1998 Jul; 201(Pt 14):2139-49. PubMed ID: 9639588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Force-sensitive mechanoreceptors of the dactyl of the crab: single-unit responses during walking and evaluation of function.
    Libersat F; Clarac F; Zill S
    J Neurophysiol; 1987 May; 57(5):1618-37. PubMed ID: 3585482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pinching forces in crayfish and fiddler crabs, and comparisons with the closing forces of other animals.
    Claussen DL; Gerald GW; Kotcher JE; Miskell CA
    J Comp Physiol B; 2008 Mar; 178(3):333-42. PubMed ID: 18064468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecdysis of decapod crustaceans is associated with a dramatic release of crustacean cardioactive peptide into the haemolymph.
    Phlippen MK; Webster SG; Chung JS; Dircksen H
    J Exp Biol; 2000 Feb; 203(Pt 3):521-36. PubMed ID: 10637181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular cloning of the crustacean hyperglycemic hormone (CHH) precursor from the X-organ and the identification of the neuropeptide from sinus gland of the Alaskan Tanner crab, Chionoecetes bairdi.
    Chung JS; Bembe S; Tamone S; Andrews E; Thomas H
    Gen Comp Endocrinol; 2009 Jun; 162(2):129-33. PubMed ID: 19332072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intersegmental coordination: influence of a single walking leg on the neighboring segments in the stick insect walking system.
    Borgmann A; Scharstein H; Büschges A
    J Neurophysiol; 2007 Sep; 98(3):1685-96. PubMed ID: 17596420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca2+- and Sr2+-activation properties of muscle fibres from a muscle receptor organ and the associated extrafusal muscle of the crab and crayfish.
    Parkinson AL; Bakker AJ; Head SI
    J Muscle Res Cell Motil; 2000; 21(7):663-71. PubMed ID: 11227793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemosensory stimuli for the walking legs of the crayfish Procambarus clarkii.
    Corotto FS; O'Brien MR
    J Chem Ecol; 2002 Jun; 28(6):1117-30. PubMed ID: 12184392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromyographic characterization of walking behavior initiated spontaneously in crayfish.
    Chikamoto K; Kagaya K; Takahata M
    Zoolog Sci; 2008 Aug; 25(8):783-92. PubMed ID: 18795811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of obstacle climbing in the cockroach, Blaberus discoidalis. I. Kinematics.
    Watson JT; Ritzmann RE; Zill SN; Pollack AJ
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Feb; 188(1):39-53. PubMed ID: 11935229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recruitment in a heterogeneous population of motor neurons that innervates the depressor muscle of the crayfish walking leg muscle.
    Hill AA; Cattaert D
    J Exp Biol; 2008 Feb; 211(Pt 4):613-29. PubMed ID: 18245639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Propioceptive influences on motor output during walking in the crayfish.
    Barnes WJ
    J Physiol (Paris); 1977; 73(4):543-64. PubMed ID: 926040
    [No Abstract]   [Full Text] [Related]  

  • 20. Avoidance learning in the crayfish (Procambarus clarkii) depends on the predatory imminence of the unconditioned stimulus: a behavior systems approach to learning in invertebrates.
    Kawai N; Kono R; Sugimoto S
    Behav Brain Res; 2004 Apr; 150(1-2):229-37. PubMed ID: 15033297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.