These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 18089825)
1. Targeting Cdc37 inhibits multiple signaling pathways and induces growth arrest in prostate cancer cells. Gray PJ; Stevenson MA; Calderwood SK Cancer Res; 2007 Dec; 67(24):11942-50. PubMed ID: 18089825 [TBL] [Abstract][Full Text] [Related]
2. Supervision of multiple signaling protein kinases by the CK2-Cdc37 couple, a possible novel cancer therapeutic target. Miyata Y; Nishida E Ann N Y Acad Sci; 2004 Dec; 1030():150-7. PubMed ID: 15659792 [TBL] [Abstract][Full Text] [Related]
3. Comparison of 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17DMAG) and 17-allylamino-17-demethoxygeldanamycin (17AAG) in vitro: effects on Hsp90 and client proteins in melanoma models. Smith V; Sausville EA; Camalier RF; Fiebig HH; Burger AM Cancer Chemother Pharmacol; 2005 Aug; 56(2):126-37. PubMed ID: 15841378 [TBL] [Abstract][Full Text] [Related]
4. Cdc37 enhances proliferation and is necessary for normal human prostate epithelial cell survival. Schwarze SR; Fu VX; Jarrard DF Cancer Res; 2003 Aug; 63(15):4614-9. PubMed ID: 12907640 [TBL] [Abstract][Full Text] [Related]
5. Hsp90 and Cdc37 -- a chaperone cancer conspiracy. Pearl LH Curr Opin Genet Dev; 2005 Feb; 15(1):55-61. PubMed ID: 15661534 [TBL] [Abstract][Full Text] [Related]
6. Silencing the cochaperone CDC37 destabilizes kinase clients and sensitizes cancer cells to HSP90 inhibitors. Smith JR; Clarke PA; de Billy E; Workman P Oncogene; 2009 Jan; 28(2):157-69. PubMed ID: 18931700 [TBL] [Abstract][Full Text] [Related]
7. A client-binding site of Cdc37. Terasawa K; Minami Y FEBS J; 2005 Sep; 272(18):4684-90. PubMed ID: 16156789 [TBL] [Abstract][Full Text] [Related]
8. Induction of human Cdc37 in prostate cancer correlates with the ability of targeted Cdc37 expression to promote prostatic hyperplasia. Stepanova L; Yang G; DeMayo F; Wheeler TM; Finegold M; Thompson TC; Harper JW Oncogene; 2000 Apr; 19(18):2186-93. PubMed ID: 10822368 [TBL] [Abstract][Full Text] [Related]
9. Role of HSP90, CDC37, and CRM1 as modulators of P16(INK4A) activity in rat liver carcinogenesis and human liver cancer. Pascale RM; Simile MM; Calvisi DF; Frau M; Muroni MR; Seddaiu MA; Daino L; Muntoni MD; De Miglio MR; Thorgeirsson SS; Feo F Hepatology; 2005 Dec; 42(6):1310-9. PubMed ID: 16317707 [TBL] [Abstract][Full Text] [Related]
10. Domain-mediated dimerization of the Hsp90 cochaperones Harc and Cdc37. Roiniotis J; Masendycz P; Ho S; Scholz GM Biochemistry; 2005 May; 44(17):6662-9. PubMed ID: 15850399 [TBL] [Abstract][Full Text] [Related]
11. Cdk2: a genuine protein kinase client of Hsp90 and Cdc37. Prince T; Sun L; Matts RL Biochemistry; 2005 Nov; 44(46):15287-95. PubMed ID: 16285732 [TBL] [Abstract][Full Text] [Related]
12. Cdc37 maintains cellular viability in Schizosaccharomyces pombe independently of interactions with heat-shock protein 90. Turnbull EL; Martin IV; Fantes PA FEBS J; 2005 Aug; 272(16):4129-40. PubMed ID: 16098195 [TBL] [Abstract][Full Text] [Related]
13. Cell cycle regulator cdk2ap1 inhibits prostate cancer cell growth and modifies androgen-responsive pathway function. Zolochevska O; Figueiredo ML Prostate; 2009 Oct; 69(14):1586-97. PubMed ID: 19585490 [TBL] [Abstract][Full Text] [Related]
14. The driver of malignancy in KG-1a leukemic cells, FGFR1OP2-FGFR1, encodes an HSP90 addicted oncoprotein. Jin Y; Zhen Y; Haugsten EM; Wiedlocha A Cell Signal; 2011 Nov; 23(11):1758-66. PubMed ID: 21745565 [TBL] [Abstract][Full Text] [Related]
15. Blocking the chaperone kinome pathway: mechanistic insights into a novel dual inhibition approach for supra-additive suppression of malignant tumors. Grover A; Shandilya A; Agrawal V; Pratik P; Bhasme D; Bisaria VS; Sundar D Biochem Biophys Res Commun; 2011 Jan; 404(1):498-503. PubMed ID: 21144839 [TBL] [Abstract][Full Text] [Related]
16. Cell Stress Induced Stressome Release Including Damaged Membrane Vesicles and Extracellular HSP90 by Prostate Cancer Cells. Eguchi T; Sogawa C; Ono K; Matsumoto M; Tran MT; Okusha Y; Lang BJ; Okamoto K; Calderwood SK Cells; 2020 Mar; 9(3):. PubMed ID: 32204513 [TBL] [Abstract][Full Text] [Related]
17. High affinity binding of Hsp90 is triggered by multiple discrete segments of its kinase clients. Scroggins BT; Prince T; Shao J; Uma S; Huang W; Guo Y; Yun BG; Hedman K; Matts RL; Hartson SD Biochemistry; 2003 Nov; 42(43):12550-61. PubMed ID: 14580201 [TBL] [Abstract][Full Text] [Related]
18. Targeting CDC37: an alternative, kinase-directed strategy for disruption of oncogenic chaperoning. Smith JR; Workman P Cell Cycle; 2009 Feb; 8(3):362-72. PubMed ID: 19177013 [TBL] [Abstract][Full Text] [Related]
19. FW-04-806 inhibits proliferation and induces apoptosis in human breast cancer cells by binding to N-terminus of Hsp90 and disrupting Hsp90-Cdc37 complex formation. Huang W; Ye M; Zhang LR; Wu QD; Zhang M; Xu JH; Zheng W Mol Cancer; 2014 Jun; 13():150. PubMed ID: 24927996 [TBL] [Abstract][Full Text] [Related]
20. Biochemical and structural studies of the interaction of Cdc37 with Hsp90. Zhang W; Hirshberg M; McLaughlin SH; Lazar GA; Grossmann JG; Nielsen PR; Sobott F; Robinson CV; Jackson SE; Laue ED J Mol Biol; 2004 Jul; 340(4):891-907. PubMed ID: 15223329 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]