These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
446 related articles for article (PubMed ID: 18090370)
1. Gas exchange and lung inflammation using nasal intermittent positive-pressure ventilation versus synchronized intermittent mandatory ventilation in piglets with saline lavage-induced lung injury: an observational study. Lampland AL; Meyers PA; Worwa CT; Swanson EC; Mammel MC Crit Care Med; 2008 Jan; 36(1):183-7. PubMed ID: 18090370 [TBL] [Abstract][Full Text] [Related]
2. Decreased lung injury after surfactant in piglets treated with continuous positive airway pressure or synchronized intermittent mandatory ventilation. Nold JL; Meyers PA; Worwa CT; Goertz RH; Huseby K; Schauer G; Mammel MC Neonatology; 2007; 92(1):19-25. PubMed ID: 17596733 [TBL] [Abstract][Full Text] [Related]
3. Open lung ventilation preserves the response to delayed surfactant treatment in surfactant-deficient newborn piglets. van Veenendaal MB; van Kaam AH; Haitsma JJ; Lutter R; Lachmann B Crit Care Med; 2006 Nov; 34(11):2827-34. PubMed ID: 17006360 [TBL] [Abstract][Full Text] [Related]
4. Open lung ventilation improves gas exchange and attenuates secondary lung injury in a piglet model of meconium aspiration. van Kaam AH; Haitsma JJ; De Jaegere A; van Aalderen WM; Kok JH; Lachmann B Crit Care Med; 2004 Feb; 32(2):443-9. PubMed ID: 14758162 [TBL] [Abstract][Full Text] [Related]
5. Non-invasive ventilation and surfactant treatment as the primary mode of respiratory support in surfactant-deficient newborn piglets. Rey-Santano C; Mielgo VE; Gomez-Solaetxe MA; Ricci F; Bianco F; Salomone F; Loureiro B; de Heredia Y Goya JL Pediatr Res; 2018 Apr; 83(4):904-914. PubMed ID: 29320485 [TBL] [Abstract][Full Text] [Related]
6. Total liquid ventilation reduces lung injury in piglets after cardiopulmonary bypass. Jiang L; Wang Q; Liu Y; Du M; Shen X; Guo X; Wu S Ann Thorac Surg; 2006 Jul; 82(1):124-30. PubMed ID: 16798202 [TBL] [Abstract][Full Text] [Related]
7. Tracheal gas insufflation as a lung-protective strategy: physiologic, histologic, and biochemical markers. Oliver RE; Rozycki HJ; Greenspan JS; Wolfson MR; Shaffer TH Pediatr Crit Care Med; 2005 Jan; 6(1):64-9. PubMed ID: 15636662 [TBL] [Abstract][Full Text] [Related]
8. Efficacy of partial liquid ventilation in improving acute lung injury induced by intratracheal acidified infant formula: determination of optimal dose and positive end-expiratory pressure level. Mikawa K; Nishina K; Takao Y; Obara H Crit Care Med; 2004 Jan; 32(1):209-16. PubMed ID: 14707581 [TBL] [Abstract][Full Text] [Related]
9. Airway pressure release ventilation as a primary ventilatory mode in acute respiratory distress syndrome. Varpula T; Valta P; Niemi R; Takkunen O; Hynynen M; Pettilä VV Acta Anaesthesiol Scand; 2004 Jul; 48(6):722-31. PubMed ID: 15196105 [TBL] [Abstract][Full Text] [Related]
10. Tracheal gas insufflation-augmented continuous positive airway pressure in a spontaneously breathing model of neonatal respiratory distress. Miller TL; Blackson TJ; Shaffer TH; Touch SM Pediatr Pulmonol; 2004 Nov; 38(5):386-95. PubMed ID: 15390348 [TBL] [Abstract][Full Text] [Related]
11. [Effect of noninvasive positive pressure ventilation on treatment of acute respiratory distress syndrome]. Xu SC; Huang YF; Wang XY; Jia M Zhongguo Wei Zhong Bing Ji Jiu Yi Xue; 2003 Jun; 15(6):354-7. PubMed ID: 12837168 [TBL] [Abstract][Full Text] [Related]
12. Standardized lung recruitment during high frequency and conventional ventilation: similar pathophysiologic and inflammatory responses in an animal model of respiratory distress syndrome. Krishnan RK; Meyers PA; Worwa C; Goertz R; Schauer G; Mammel MC Intensive Care Med; 2004 Jun; 30(6):1195-203. PubMed ID: 14997292 [TBL] [Abstract][Full Text] [Related]
13. Recombinant angiotensin-converting enzyme 2 improves pulmonary blood flow and oxygenation in lipopolysaccharide-induced lung injury in piglets. Treml B; Neu N; Kleinsasser A; Gritsch C; Finsterwalder T; Geiger R; Schuster M; Janzek E; Loibner H; Penninger J; Loeckinger A Crit Care Med; 2010 Feb; 38(2):596-601. PubMed ID: 19851091 [TBL] [Abstract][Full Text] [Related]
14. Assessing the benefits of noninvasive ventilation: the tissue is the issue. Wolf GK; Arnold JH Crit Care Med; 2008 Jan; 36(1):349-50. PubMed ID: 18158453 [No Abstract] [Full Text] [Related]
15. Effects of pressure support during an acute reduction of synchronized intermittent mandatory ventilation in preterm infants. Osorio W; Claure N; D'Ugard C; Athavale K; Bancalari E J Perinatol; 2005 Jun; 25(6):412-6. PubMed ID: 15843812 [TBL] [Abstract][Full Text] [Related]
16. Early high-frequency oscillatory ventilation versus synchronized intermittent mandatory ventilation in very low birth weight infants: a pilot study of two ventilation protocols. Durand DJ; Asselin JM; Hudak ML; Aschner JL; McArtor RD; Cleary JP; VanMeurs KP; Stewart DL; Shoemaker CT; Wiswell TE; Courtney SE J Perinatol; 2001 Jun; 21(4):221-9. PubMed ID: 11533838 [TBL] [Abstract][Full Text] [Related]
17. Combination of arteriovenous extracorporeal lung assist and high-frequency oscillatory ventilation in a porcine model of lavage-induced acute lung injury: a randomized controlled trial. Brederlau J; Muellenbach R; Kredel M; Kuestermann J; Anetseder M; Greim C; Roewer N J Trauma; 2007 Feb; 62(2):336-46; discussion 345-6. PubMed ID: 17297323 [TBL] [Abstract][Full Text] [Related]
18. Chest wall disruption with and without acute lung injury: effects of continuous positive airway pressure therapy on ventilation and perfusion relationships. Schweiger JW; Downs JB; Smith RA Crit Care Med; 2003 Sep; 31(9):2364-70. PubMed ID: 14501968 [TBL] [Abstract][Full Text] [Related]
19. Effects of respiratory rate on ventilator-induced lung injury at a constant PaCO2 in a mouse model of normal lung. Vaporidi K; Voloudakis G; Priniannakis G; Kondili E; Koutsopoulos A; Tsatsanis C; Georgopoulos D Crit Care Med; 2008 Apr; 36(4):1277-83. PubMed ID: 18379255 [TBL] [Abstract][Full Text] [Related]
20. A decremental PEEP trial for determining open-lung PEEP in a rabbit model of acute lung injury. Hua YM; Lien SH; Liu TY; Lee CM; Yuh YS Pediatr Pulmonol; 2008 Apr; 43(4):371-80. PubMed ID: 18293413 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]