These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 18091489)

  • 1. Immature sheep spines are more flexible than mature spines: an in vitro biomechanical study.
    Clarke EC; Appleyard RC; Bilston LE
    Spine (Phila Pa 1976); 2007 Dec; 32(26):2970-9. PubMed ID: 18091489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro biomechanical characteristics of the spine: a comparison between human and porcine spinal segments.
    Busscher I; van der Veen AJ; van Dieën JH; Kingma I; Verkerke GJ; Veldhuizen AG
    Spine (Phila Pa 1976); 2010 Jan; 35(2):E35-42. PubMed ID: 20081499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical comparison of calf and human spines.
    Wilke HJ; Krischak S; Claes L
    J Orthop Res; 1996 May; 14(3):500-3. PubMed ID: 8676264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the Total Facet Arthroplasty System after complete laminectomy-facetectomy on the biomechanics of implanted and adjacent segments.
    Phillips FM; Tzermiadianos MN; Voronov LI; Havey RM; Carandang G; Renner SM; Rosler DM; Ochoa JA; Patwardhan AG
    Spine J; 2009; 9(1):96-102. PubMed ID: 18440280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural space and biomechanical integrity of the developing cervical spine in compression.
    Nuckley DJ; Van Nausdle JA; Eck MP; Ching RP
    Spine (Phila Pa 1976); 2007 Mar; 32(6):E181-7. PubMed ID: 17413458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anterior cervical discectomy and fusion with a locked plate and wedged graft effectively stabilizes flexion-distraction stage-3 injury in the lower cervical spine: a biomechanical study.
    Paxinos O; Ghanayem AJ; Zindrick MR; Voronov LI; Havey RM; Carandang G; Hadjipavlou A; Patwardhan AG
    Spine (Phila Pa 1976); 2009 Jan; 34(1):E9-15. PubMed ID: 19127153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of facetectomy and crosslink augmentation on motion segment flexibility in posterior lumbar interbody fusion.
    Chutkan NB; Zhou H; Akins JP; Wenger KH
    Spine (Phila Pa 1976); 2008 Oct; 33(22):E828-35. PubMed ID: 18923306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of posterior thoracic spine anatomical structures on motion segment flexion stiffness.
    Anderson AL; McIff TE; Asher MA; Burton DC; Glattes RC
    Spine (Phila Pa 1976); 2009 Mar; 34(5):441-6. PubMed ID: 19247164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of repeated loading and freeze-thaw cycling on immature bovine thoracic motion segment stiffness.
    Sunni N; Askin GN; Labrom RD; Izatt MT; Pearcy MJ; Adam CJ
    Proc Inst Mech Eng H; 2014 Oct; 228(10):1100-7. PubMed ID: 25406230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interbody device endplate engagement effects on motion segment biomechanics.
    Buttermann GR; Beaubien BP; Freeman AL; Stoll JE; Chappuis JL
    Spine J; 2009 Jul; 9(7):564-73. PubMed ID: 19457722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanics of the anterior longitudinal ligament during 8 g whiplash simulation following single- and contiguous two-level fusion: a finite element study.
    Dang AB; Hu SS; Tay BK
    Spine (Phila Pa 1976); 2008 Mar; 33(6):607-11. PubMed ID: 18344853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revision strategies for single- and two-level total disc arthroplasty procedures: a biomechanical perspective.
    Cunningham BW; Hu N; Beatson HJ; Serhan H; Sefter JC; McAfee PC
    Spine J; 2009 Sep; 9(9):735-43. PubMed ID: 19477694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tension and combined tension-extension structural response and tolerance properties of the human male ligamentous cervical spine.
    Dibb AT; Nightingale RW; Luck JF; Chancey VC; Fronheiser LE; Myers BS
    J Biomech Eng; 2009 Aug; 131(8):081008. PubMed ID: 19604020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of fatigue failure responses of old versus middle-aged lumbar motion segments in simulated flexed lifting.
    Gallagher S; Marras WS; Litsky AS; Burr D; Landoll J; Matkovic V
    Spine (Phila Pa 1976); 2007 Aug; 32(17):1832-9. PubMed ID: 17762290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method to calculate relative spinal motion without digitization.
    Wu C; Mehbod AA; Erkan S; Transfeldt EE
    Spine J; 2009 Feb; 9(2):182-9. PubMed ID: 18790682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical contribution of transverse connectors to segmental stability following long segment instrumentation with thoracic pedicle screws.
    Kuklo TR; Dmitriev AE; Cardoso MJ; Lehman RA; Erickson M; Gill NW
    Spine (Phila Pa 1976); 2008 Jul; 33(15):E482-7. PubMed ID: 18594445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending.
    Little JP; Adam CJ
    Spine (Phila Pa 1976); 2009 Jan; 34(2):E76-82. PubMed ID: 19139657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatigue failure in shear loading of porcine lumbar spine segments.
    van Dieën JH; van der Veen A; van Royen BJ; Kingma I
    Spine (Phila Pa 1976); 2006 Jul; 31(15):E494-8. PubMed ID: 16816749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do flexion/extension postures affect the in vivo passive lumbar spine response to applied axial twist moments?
    Drake JD; Callaghan JP
    Clin Biomech (Bristol); 2008 Jun; 23(5):510-9. PubMed ID: 18234402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of halo-vest components on stabilizing the injured cervical spine.
    Ivancic PC; Beauchman NN; Tweardy L
    Spine (Phila Pa 1976); 2009 Jan; 34(2):167-75. PubMed ID: 19139667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.