These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 18091825)

  • 1. Direct fabrication of microgratings in fused quartz by laser-induced plasma-assisted ablation with a KrF excimer laser.
    Zhang J; Sugioka K; Midorikawa K
    Opt Lett; 1998 Sep; 23(18):1486-8. PubMed ID: 18091825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface microarchitectural design in biomedical applications: preparation of microporous polymer surfaces by an excimer laser ablation technique.
    Nakayama Y; Matsuda T
    J Biomed Mater Res; 1995 Oct; 29(10):1295-301. PubMed ID: 8557732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Etching-Assisted Ablation of the UV-Transparent Fluoropolymer CYTOP Using Various Laser Pulse Widths and Subsequent Microfluidic Applications.
    Nemoto K; Hanada Y
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30558316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A New Insight into High-Aspect-Ratio Channel Drilling in Translucent Dielectrics with a KrF Laser for Waveguide Applications.
    Smetanin IV; Shutov AV; Ustinovskii NN; Veliev PV; Zvorykin VD
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-quality sapphire microprocessing by dual-beam laser induced plasma assisted ablation.
    Li Y; Liu H; Hong M
    Opt Express; 2020 Mar; 28(5):6242-6250. PubMed ID: 32225877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. KrF excimer laser precision machining of hard and brittle ceramic biomaterials.
    Huang YX; Lu JY; Huang JX
    Biomed Mater; 2014 Jun; 9(3):035009. PubMed ID: 24784833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulse compression grating fabrication by diffractive proximity photolithography.
    Stuerzebecher L; Fuchs F; Harzendorf T; Zeitner UD
    Opt Lett; 2014 Feb; 39(4):1042-5. PubMed ID: 24562273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient refractive-index modification of fused silica by a resonance-photoionization-like process using F(2) and KrF excimer lasers.
    Obata K; Sugioka K; Akane T; Midorikawa K; Aoki N; Toyoda K
    Opt Lett; 2002 Mar; 27(5):330-2. PubMed ID: 18007793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffractive microlenses replicated in fused silica for excimer laser-beam homogenizing.
    Nikolajeff F; Hård S; Curtis B
    Appl Opt; 1997 Nov; 36(32):8481-9. PubMed ID: 18264393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid fabrication of diffractive optical elements by use of image-based excimer laser ablation.
    Wang X; Leger JR; Rediker RH
    Appl Opt; 1997 Jul; 36(20):4660-5. PubMed ID: 18259262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The thermodynamic response of soft biological tissues to pulsed ultraviolet laser irradiation.
    Venugopalan V; Nishioka NS; Mikić BB
    Biophys J; 1995 Oct; 69(4):1259-71. PubMed ID: 8534796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Femtosecond laser-assisted fabrication of piezoelectrically actuated crystalline quartz-based MEMS resonators.
    Linden J; Melech N; Sakaev I; Fogel O; Krylov S; Nuttman D; Zalevsky Z; Sirota M
    Microsyst Nanoeng; 2023; 9():38. PubMed ID: 37007607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excimer laser induced quantum well intermixing: a reproducibility study of the process for fabrication of photonic integrated devices.
    Beal R; Aimez V; Dubowski JJ
    Opt Express; 2015 Jan; 23(2):1073-80. PubMed ID: 25835867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of Birefringence and Polarization- Dependent Loss of Long-Period Fiber Gratings Fabricated with a KrF Excimer Laser.
    Oh S; Han W; Paek U; Chung Y
    Opt Express; 2003 Nov; 11(23):3087-92. PubMed ID: 19471430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast direct imprinting of nanostructures in metals by pulsed laser melting.
    Cui B; Keimel C; Chou SY
    Nanotechnology; 2010 Jan; 21(4):045303. PubMed ID: 20009206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical model for CO(2) laser ablation of fused quartz.
    Nowak KM; Baker HJ; Hall DR
    Appl Opt; 2015 Oct; 54(29):8653-63. PubMed ID: 26479800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of polymer molecular weight on the chemical modifications induced by UV laser ablation.
    Rebollar E; Bounos G; Oujja M; Domingo C; Georgiou S; Castillejo M
    J Phys Chem B; 2006 Jul; 110(29):14215-20. PubMed ID: 16854122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of a beam delivery system for a short-pulse KrF laser used for material ablation.
    Dainesi P; Ihlemann J; Simon P
    Appl Opt; 1997 Sep; 36(27):7080-5. PubMed ID: 18259584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid fabrication and piezoelectric tuning of micro- and nanopores in single crystal quartz.
    Stava E; Yu M; Shin HC; Shin H; Kreft DJ; Blick RH
    Lab Chip; 2013 Jan; 13(1):156-60. PubMed ID: 23142827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of fluidic submicron-channels by pulsed laser-induced buckling of SiO
    Bakhtiari N; Ihlemann J
    Discov Nano; 2024 Mar; 19(1):46. PubMed ID: 38485854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.