These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Chemical Imaging of Self-Assembled Monolayers on Copper Using Compressive Hyperspectral Sum Frequency Generation Microscopy. Zheng D; Lu L; Kelly KF; Baldelli S J Phys Chem B; 2018 Jan; 122(2):464-471. PubMed ID: 28795555 [TBL] [Abstract][Full Text] [Related]
25. Ultra-broadband sum-frequency vibrational spectrometer of aqueous interfaces based on a non-collinear optical parametric amplifier. Isaienko O; Borguet E Opt Express; 2012 Jan; 20(1):547-61. PubMed ID: 22274376 [TBL] [Abstract][Full Text] [Related]
26. Unified treatment and measurement of the spectral resolution and temporal effects in frequency-resolved sum-frequency generation vibrational spectroscopy (SFG-VS). Velarde L; Wang HF Phys Chem Chem Phys; 2013 Dec; 15(46):19970-84. PubMed ID: 24076622 [TBL] [Abstract][Full Text] [Related]
27. Sum frequency generation (SFG) vibrational spectroscopy of planar phosphatidylethanolamine hybrid bilayer membranes under water. Kett PJ; Casford MT; Davies PB Langmuir; 2010 Jun; 26(12):9710-9. PubMed ID: 20394443 [TBL] [Abstract][Full Text] [Related]
28. Comparative study of direct and phase-specific vibrational sum-frequency generation spectroscopy: advantages and limitations. Pool RE; Versluis J; Backus EH; Bonn M J Phys Chem B; 2011 Dec; 115(51):15362-9. PubMed ID: 22074616 [TBL] [Abstract][Full Text] [Related]
30. Polarization-sensitive sum-frequency generation microscopy of collagen fibers. Han Y; Hsu J; Ge NH; Potma EO J Phys Chem B; 2015 Feb; 119(8):3356-65. PubMed ID: 25614936 [TBL] [Abstract][Full Text] [Related]
31. Efficient Spectral Diffusion at the Air/Water Interface Revealed by Femtosecond Time-Resolved Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy. Inoue K; Ishiyama T; Nihonyanagi S; Yamaguchi S; Morita A; Tahara T J Phys Chem Lett; 2016 May; 7(10):1811-5. PubMed ID: 27120559 [TBL] [Abstract][Full Text] [Related]
32. Generation of energetic femtosecond green pulses based on an OPCPA-SFG scheme. Mero M; Sipos A; Kurdi G; Osvay K Opt Express; 2011 May; 19(10):9646-55. PubMed ID: 21643223 [TBL] [Abstract][Full Text] [Related]
33. Visible-pulse generation in gain crystal of near-infrared femtosecond optical parametric oscillator. Jeong TY; Kim SH; Kim GH; Yee KJ Opt Express; 2015 Oct; 23(20):25620-7. PubMed ID: 26480078 [TBL] [Abstract][Full Text] [Related]
35. Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air. Fuji T; Suzuki T Opt Lett; 2007 Nov; 32(22):3330-2. PubMed ID: 18026297 [TBL] [Abstract][Full Text] [Related]
36. Generation of sub-30-fs microjoule mid-infrared pulses for ultrafast vibrational dynamics at solid/liquid interfaces. Boulesbaa A; Isaienko O; Tuladhar A; Borguet E Opt Lett; 2013 Dec; 38(23):5008-11. PubMed ID: 24281496 [TBL] [Abstract][Full Text] [Related]
37. Generation of narrowband subpicosecond mid-infrared pulses via difference frequency mixing of chirped near-infrared pulses. Koller FO; Haiser K; Huber M; Schrader TE; Regner N; Schreier WJ; Zinth W Opt Lett; 2007 Nov; 32(22):3339-41. PubMed ID: 18026300 [TBL] [Abstract][Full Text] [Related]
38. Deep-ultraviolet picosecond flat-top pulses by chirp-matched sum frequency generation. Vicario C; Trisorio A; Arisholm G; Hauri CP Opt Lett; 2012 May; 37(10):1619-21. PubMed ID: 22627515 [TBL] [Abstract][Full Text] [Related]
39. Structural Characterization of Single-Stranded DNA Monolayers Using Two-Dimensional Sum Frequency Generation Spectroscopy. Ho JJ; Skoff DR; Ghosh A; Zanni MT J Phys Chem B; 2015 Aug; 119(33):10586-96. PubMed ID: 26222775 [TBL] [Abstract][Full Text] [Related]
40. Multireflection sum frequency generation vibrational spectroscopy. Zhang C; Jasensky J; Chen Z Anal Chem; 2015 Aug; 87(16):8157-64. PubMed ID: 26176565 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]