These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 18091919)

  • 1. Cooperative stimulated Brillouin and Rayleigh backscattering process in optical fiber.
    Fotiadi AA; Kiyan RV
    Opt Lett; 1998 Dec; 23(23):1805-7. PubMed ID: 18091919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber.
    Pang M; Xie S; Bao X; Zhou DP; Lu Y; Chen L
    Opt Lett; 2012 Aug; 37(15):3129-31. PubMed ID: 22859108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Spectra and influences of Rayleigh and stimulated Brillouin scattering in fiber-optic distributed disturbance sensor].
    Zhang CX; Liang S; Feng XJ; Lin WT; Li C; Li Q; Zhong X; Li LJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Jul; 31(7):1862-7. PubMed ID: 21942040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser.
    Pang M; Bao X; Chen L
    Opt Lett; 2013 Jun; 38(11):1866-8. PubMed ID: 23722771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical properties of stimulated Brillouin scattering in single-mode optical fibers above threshold.
    Fotiadi AA; Kiyan R; Deparis O; Mégret P; Blondel M
    Opt Lett; 2002 Jan; 27(2):83-5. PubMed ID: 18007719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Rayleigh backscattering on Stimulated Brillouin Scattering threshold evaluation for 10 Gb/s NRZ-OOK signals.
    Ferrario M; Marazzi L; Boffi P; Righetti A; Martinelli M
    Opt Express; 2009 Sep; 17(20):18110-5. PubMed ID: 19907601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of pump recycling technique on stimulated Brillouin scattering threshold: a theoretical model.
    Al-Asadi HA; Al-Mansoori MH; Ajiya M; Hitam S; Saripan MI; Mahdi MA
    Opt Express; 2010 Oct; 18(21):22339-47. PubMed ID: 20941134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abnormally low threshold gain of stimulated Brillouin scattering in long optical fiber with feedback.
    Kovalev VI; Harrison RG
    Opt Express; 2008 Aug; 16(16):12272-7. PubMed ID: 18679504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tens of hertz narrow-linewidth laser based on stimulated Brillouin and Rayleigh scattering.
    Huang S; Zhu T; Yin G; Lan T; Huang L; Li F; Bai Y; Qu D; Huang X; Qiu F
    Opt Lett; 2017 Dec; 42(24):5286-5289. PubMed ID: 29240194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compact single-end pumped Brillouin random fiber laser with enhanced distributed feedback.
    Xu Y; Lu P; Bao X
    Opt Lett; 2020 Aug; 45(15):4236-4239. PubMed ID: 32735267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of multiorder Stokes and anti-Stokes lines in a Brillouin erbium-fiber laser with a Sagnac loop mirror.
    Lim DS; Lee HK; Kim KH; Kang SB; Ahn JT; Jeon MY
    Opt Lett; 1998 Nov; 23(21):1671-3. PubMed ID: 18091879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brillouin-Raman comb fiber laser with cooperative Rayleigh scattering in a linear cavity.
    Zamzuri AK; Md Ali MI; Ahmad A; Mohamad R; Mahdi MA
    Opt Lett; 2006 Apr; 31(7):918-20. PubMed ID: 16599211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation on the Influence of Humidity on Stimulated Brillouin Backscattering in Perfluorinated Polymer Optical Fibers.
    Schreier A; Liehr S; Wosniok A; Krebber K
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30445689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental study on stimulated Rayleigh scattering in optical fibers.
    Zhu T; Bao X; Chen L; Liang H; Dong Y
    Opt Express; 2010 Oct; 18(22):22958-63. PubMed ID: 21164634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Random Brillouin fiber laser for tunable ultra-narrow linewidth microwave generation.
    Xiang D; Lu P; Xu Y; Chen L; Bao X
    Opt Lett; 2016 Oct; 41(20):4839-4842. PubMed ID: 28005844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave.
    Horiguchi T; Tateda M
    Opt Lett; 1989 Apr; 14(8):408-10. PubMed ID: 19749936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Filtered pseudo random modulated fiber amplifier with enhanced coherence and nonlinear suppression.
    Anderson BM; Flores A; Dajani I
    Opt Express; 2017 Jul; 25(15):17671-17682. PubMed ID: 28789259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Random fiber laser based on artificially controlled backscattering fibers.
    Wang X; Chen D; Li H; She L; Wu Q
    Appl Opt; 2018 Jan; 57(2):258-262. PubMed ID: 29328173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Temperature Sensitivity in Stimulated Brillouin Scattering of 1060 nm Single-Mode Fibers.
    Song S; Jung A; Oh K
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31683547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of stimulated Brillouin scattering in optical fibers by tilted fiber Bragg gratings.
    Tian X; Zhao X; Wang M; Wang Z
    Opt Lett; 2020 Sep; 45(17):4802-4805. PubMed ID: 32870861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.