These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Interdigitated electrode-induced phase grating with an electrically switchable and tunable period. Kulishov M Appl Opt; 1999 Dec; 38(36):7356-63. PubMed ID: 18324284 [TBL] [Abstract][Full Text] [Related]
6. Electro-optic variable focal-length lens using PLZT ceramic. Tatebayashi T; Yamamoto T; Sato H Appl Opt; 1991 Dec; 30(34):5049-55. PubMed ID: 20717319 [TBL] [Abstract][Full Text] [Related]
7. Test and analysis of an electro-optic dynamic diverging lens for three-dimensional optical memories. Song QW; Wang XM; Haritatos F Appl Opt; 1997 Mar; 36(8):1796-803. PubMed ID: 18250867 [TBL] [Abstract][Full Text] [Related]
8. A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths. Kao YY; Chao PC; Hsueh CW Opt Express; 2010 Aug; 18(18):18506-18. PubMed ID: 20940742 [TBL] [Abstract][Full Text] [Related]
9. Dual focal point electro-optic lens with a Fresnel-zone plate on a PLZT ceramic. Tatebayashi T; Yamamoto T; Sato H Appl Opt; 1992 May; 31(15):2770-5. PubMed ID: 20725208 [TBL] [Abstract][Full Text] [Related]
10. Modeling of a converging gradient-index lens with variable focal length in a lanthanum-modified lead zirconate titanate ceramic cylinder with a lateral multielectrode structure. Kulishov M Appl Opt; 1998 Jun; 37(16):3506-14. PubMed ID: 18273317 [TBL] [Abstract][Full Text] [Related]
11. Switchable optical element with Bragg mode diffraction. Kulishov M; Sarkisov S; Boiko Y; Cheben P Opt Lett; 2001 Jun; 26(11):759-61. PubMed ID: 18040441 [TBL] [Abstract][Full Text] [Related]
12. Planar microlens relay optics utilizing lateral focusing. Intani D; Baba T; Iga K Appl Opt; 1992 Sep; 31(25):5255-8. PubMed ID: 20733703 [TBL] [Abstract][Full Text] [Related]
13. Achieving high focusing power for a large-aperture liquid crystal lens with novel hole-and-ring electrodes. Chiu CW; Lin YC; Chao PC; Fuh AY Opt Express; 2008 Nov; 16(23):19277-84. PubMed ID: 19582020 [TBL] [Abstract][Full Text] [Related]
14. Electro-optic focusing system for a high-density optical disk. Osato K; Kino GS; Kubota S Opt Lett; 1993 Aug; 18(15):1244-6. PubMed ID: 19823346 [TBL] [Abstract][Full Text] [Related]
15. Separation algorithm for a 2D refractive index distribution and thickness profile of a phase object by laser diode-based multiwavelength interferometry. Lee K; Ryu SY; Kwak YK; Kim S; Lee YW Rev Sci Instrum; 2009 May; 80(5):053114. PubMed ID: 19485499 [TBL] [Abstract][Full Text] [Related]
16. Polymer-stabilized liquid crystal microlens array with large dynamic range and fast response time. Ren H; Xu S; Wu ST Opt Lett; 2013 Aug; 38(16):3144-7. PubMed ID: 24104671 [TBL] [Abstract][Full Text] [Related]
17. Solving the general inter-ring distances optimization problem for concentric ring electrodes to improve Laplacian estimation. Makeyev O Biomed Eng Online; 2018 Aug; 17(1):117. PubMed ID: 30165898 [TBL] [Abstract][Full Text] [Related]
18. Improving the Accuracy of Laplacian Estimation with Novel Variable Inter-Ring Distances Concentric Ring Electrodes. Makeyev O; Besio WG Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27294933 [TBL] [Abstract][Full Text] [Related]
19. Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis. Datta A; Elwassif M; Battaglia F; Bikson M J Neural Eng; 2008 Jun; 5(2):163-74. PubMed ID: 18441418 [TBL] [Abstract][Full Text] [Related]
20. Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS). Alam M; Truong DQ; Khadka N; Bikson M Phys Med Biol; 2016 Jun; 61(12):4506-21. PubMed ID: 27223853 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]