BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 18092140)

  • 1. Composite fibrin scaffolds increase mechanical strength and preserve contractility of tissue engineered blood vessels.
    Yao L; Liu J; Andreadis ST
    Pharm Res; 2008 May; 25(5):1212-21. PubMed ID: 18092140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fibrin-based tissue-engineered blood vessels: differential effects of biomaterial and culture parameters on mechanical strength and vascular reactivity.
    Yao L; Swartz DD; Gugino SF; Russell JA; Andreadis ST
    Tissue Eng; 2005; 11(7-8):991-1003. PubMed ID: 16144435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of fibrin-based functional and implantable small-diameter blood vessels.
    Swartz DD; Russell JA; Andreadis ST
    Am J Physiol Heart Circ Physiol; 2005 Mar; 288(3):H1451-60. PubMed ID: 15486037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of fibrin into a collagen-glycosaminoglycan matrix results in a scaffold with improved mechanical properties and enhanced capacity to resist cell-mediated contraction.
    Brougham CM; Levingstone TJ; Jockenhoevel S; Flanagan TC; O'Brien FJ
    Acta Biomater; 2015 Oct; 26():205-14. PubMed ID: 26297884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel method for the generation of tissue-engineered vascular grafts based on a highly compacted fibrin matrix.
    Aper T; Wilhelmi M; Gebhardt C; Hoeffler K; Benecke N; Hilfiker A; Haverich A
    Acta Biomater; 2016 Jan; 29():21-32. PubMed ID: 26472610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogel Coating Optimization to Augment Engineered Soft Tissue Mechanics in Tissue-Engineered Blood Vessels.
    Wonski BT; Fisher B; Lam MT
    Bioengineering (Basel); 2023 Jun; 10(7):. PubMed ID: 37508807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue-engineered small-caliber vascular graft based on a novel biodegradable composite fibrin-polylactide scaffold.
    Tschoeke B; Flanagan TC; Koch S; Harwoko MS; Deichmann T; Ellå V; Sachweh JS; Kellomåki M; Gries T; Schmitz-Rode T; Jockenhoevel S
    Tissue Eng Part A; 2009 Aug; 15(8):1909-18. PubMed ID: 19125650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of engineered vascular constructs made from collagen, fibrin, and collagen-fibrin mixtures.
    Cummings CL; Gawlitta D; Nerem RM; Stegemann JP
    Biomaterials; 2004 Aug; 25(17):3699-706. PubMed ID: 15020145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fusion of concentrically layered tubular tissue constructs increases burst strength.
    Huynh TN; Tranquillo RT
    Ann Biomed Eng; 2010 Jun; 38(6):2226-36. PubMed ID: 20431952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembled Collagen-Fibrin Hydrogel Reinforces Tissue Engineered Adventitia Vessels Seeded with Human Fibroblasts.
    Patel B; Xu Z; Pinnock CB; Kabbani LS; Lam MT
    Sci Rep; 2018 Feb; 8(1):3294. PubMed ID: 29459640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional tissue-engineered blood vessels from bone marrow progenitor cells.
    Liu JY; Swartz DD; Peng HF; Gugino SF; Russell JA; Andreadis ST
    Cardiovasc Res; 2007 Aug; 75(3):618-28. PubMed ID: 17512920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transluminal compression increases mechanical stability, stiffness and endothelialization capacity of fibrin-based bioartificial blood vessels.
    Helms F; Haverich A; Böer U; Wilhelmi M
    J Mech Behav Biomed Mater; 2021 Dec; 124():104835. PubMed ID: 34530301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructure and mechanics of collagen-fibrin matrices polymerized using ancrod snake venom enzyme.
    Rowe SL; Stegemann JP
    J Biomech Eng; 2009 Jun; 131(6):061012. PubMed ID: 19449966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Customizable engineered blood vessels using 3D printed inserts.
    Pinnock CB; Meier EM; Joshi NN; Wu B; Lam MT
    Methods; 2016 Apr; 99():20-7. PubMed ID: 26732049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of tissue-engineered small-diameter vascular grafts in fibrin scaffolds in 30 days.
    Gui L; Boyle MJ; Kamin YM; Huang AH; Starcher BC; Miller CA; Vishnevetsky MJ; Niklason LE
    Tissue Eng Part A; 2014 May; 20(9-10):1499-507. PubMed ID: 24320793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allogeneic human tissue-engineered blood vessel.
    Quint C; Arief M; Muto A; Dardik A; Niklason LE
    J Vasc Surg; 2012 Mar; 55(3):790-8. PubMed ID: 22056286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue engineered vessel from a biodegradable electrospun scaffold stimulated with mechanical stretch.
    Hodge J; Quint C
    Biomed Mater; 2020 Jul; 15(5):055006. PubMed ID: 32348975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineered small diameter vascular grafts by combining cell sheet engineering and electrospinning technology.
    Ahn H; Ju YM; Takahashi H; Williams DF; Yoo JJ; Lee SJ; Okano T; Atala A
    Acta Biomater; 2015 Apr; 16():14-22. PubMed ID: 25641646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manipulation of remodeling pathways to enhance the mechanical properties of a tissue engineered blood vessel.
    Ogle BM; Mooradian DL
    J Biomech Eng; 2002 Dec; 124(6):724-33. PubMed ID: 12596641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of mechanical stretch on collagen and cross-linking in engineered blood vessels.
    Solan A; Dahl SL; Niklason LE
    Cell Transplant; 2009; 18(8):915-21. PubMed ID: 19500474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.