BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 18092341)

  • 1. Local self-assembly mechanisms underlie the differential transformation of the proximal and distal cut axonal ends into functional and aberrant growth cones.
    Erez H; Spira ME
    J Comp Neurol; 2008 Mar; 507(1):1019-30. PubMed ID: 18092341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local calcium-dependent mechanisms determine whether a cut axonal end assembles a retarded endbulb or competent growth cone.
    Kamber D; Erez H; Spira ME
    Exp Neurol; 2009 Sep; 219(1):112-25. PubMed ID: 19442660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of microtubule-based traps controls the sorting and concentration of vesicles to restricted sites of regenerating neurons after axotomy.
    Erez H; Malkinson G; Prager-Khoutorsky M; De Zeeuw CI; Hoogenraad CC; Spira ME
    J Cell Biol; 2007 Feb; 176(4):497-507. PubMed ID: 17283182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-line confocal imaging of the events leading to structural dedifferentiation of an axonal segment into a growth cone after axotomy.
    Sahly I; Khoutorsky A; Erez H; Prager-Khoutorsky M; Spira ME
    J Comp Neurol; 2006 Feb; 494(5):705-20. PubMed ID: 16374810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical calpain-dependent ultrastructural alterations underlie the transformation of an axonal segment into a growth cone after axotomy of cultured Aplysia neurons.
    Spira ME; Oren R; Dormann A; Gitler D
    J Comp Neurol; 2003 Mar; 457(3):293-312. PubMed ID: 12541311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resealing of the proximal and distal cut ends of transected axons: electrophysiological and ultrastructural analysis.
    Spira ME; Benbassat D; Dormann A
    J Neurobiol; 1993 Mar; 24(3):300-16. PubMed ID: 8492108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of Aplysia neurons for the study of cellular alterations and the resealing of transected axons in vitro.
    Spira ME; Dormann A; Ashery U; Gabso M; Gitler D; Benbassat D; Oren R; Ziv NE
    J Neurosci Methods; 1996 Oct; 69(1):91-102. PubMed ID: 8912939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and organization of membrane organelles along distal microtubule segments in growth cones.
    Dailey ME; Bridgman PC
    J Neurosci Res; 1991 Sep; 30(1):242-58. PubMed ID: 1795407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clustering of excess growth resources within leading growth cones underlies the recurrent "deposition" of varicosities along developing neurites.
    Malkinson G; Spira ME
    Exp Neurol; 2010 Sep; 225(1):140-53. PubMed ID: 20558161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unrestrained growth of correctly oriented microtubules instructs axonal microtubule orientation.
    Jakobs MAH; Zemel A; Franze K
    Elife; 2022 Oct; 11():. PubMed ID: 36214669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tau-induced traffic jams reflect organelles accumulation at points of microtubule polar mismatching.
    Shemesh OA; Erez H; Ginzburg I; Spira ME
    Traffic; 2008 Apr; 9(4):458-71. PubMed ID: 18182010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct interactions between immunocytes and neurons after axotomy in Aplysia.
    Farr M; Zhu DF; Povelones M; Valcich D; Ambron RT
    J Neurobiol; 2001 Feb; 46(2):89-96. PubMed ID: 11153011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal distribution of Ca2+ following axotomy and throughout the recovery process of cultured Aplysia neurons.
    Ziv NE; Spira ME
    Eur J Neurosci; 1993 Jun; 5(6):657-68. PubMed ID: 8261139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium, protease activation, and cytoskeleton remodeling underlie growth cone formation and neuronal regeneration.
    Spira ME; Oren R; Dormann A; Ilouz N; Lev S
    Cell Mol Neurobiol; 2001 Dec; 21(6):591-604. PubMed ID: 12043835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurite retraction and regrowth regulated by membrane retrieval, membrane supply, and actin dynamics.
    Prager-Khoutorsky M; Spira ME
    Brain Res; 2009 Jan; 1251():65-79. PubMed ID: 19022228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localized and transient elevations of intracellular Ca2+ induce the dedifferentiation of axonal segments into growth cones.
    Ziv NE; Spira ME
    J Neurosci; 1997 May; 17(10):3568-79. PubMed ID: 9133380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Axonal rejoining inhibits injury-induced long-term changes in Aplysia sensory neurons in vitro.
    Bedi SS; Glanzman DL
    J Neurosci; 2001 Dec; 21(24):9667-77. PubMed ID: 11739576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the degree of polar mismatching on traffic jam formation in fast axonal transport.
    Kuznetsov AV
    Comput Methods Biomech Biomed Engin; 2010 Dec; 13(6):711-22. PubMed ID: 20336560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fate of constitutive endocytic vesicles formed in the growth cone: transport of vesicles from one growth cone to another in the same neuron.
    Denburg JL; Hughen RW; Tucker D; Kater SB
    J Neurobiol; 2005 Feb; 62(2):262-77. PubMed ID: 15490484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of growth cone formation by transient and localized increases of intracellular proteolytic activity.
    Ziv NE; Spira ME
    J Cell Biol; 1998 Jan; 140(1):223-32. PubMed ID: 9425169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.