These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
336 related articles for article (PubMed ID: 18092388)
1. Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. Cavalier-Smith T J Eukaryot Microbiol; 1999; 46(4):347-66. PubMed ID: 18092388 [TBL] [Abstract][Full Text] [Related]
2. Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). Cavalier-Smith T Philos Trans R Soc Lond B Biol Sci; 2003 Jan; 358(1429):109-33; discussion 133-4. PubMed ID: 12594921 [TBL] [Abstract][Full Text] [Related]
3. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Cavalier-Smith T Int J Syst Evol Microbiol; 2002 Mar; 52(Pt 2):297-354. PubMed ID: 11931142 [TBL] [Abstract][Full Text] [Related]
4. The excavate protozoan phyla Metamonada Grassé emend. (Anaeromonadea, Parabasalia, Carpediemonas, Eopharyngia) and Loukozoa emend. (Jakobea, Malawimonas): their evolutionary affinities and new higher taxa. Cavalier-Smith T Int J Syst Evol Microbiol; 2003 Nov; 53(Pt 6):1741-58. PubMed ID: 14657102 [TBL] [Abstract][Full Text] [Related]
5. Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences. Cavalier-Smith T Protoplasma; 2018 Jan; 255(1):297-357. PubMed ID: 28875267 [TBL] [Abstract][Full Text] [Related]
6. Membrane heredity and early chloroplast evolution. Cavalier-Smith T Trends Plant Sci; 2000 Apr; 5(4):174-82. PubMed ID: 10740299 [TBL] [Abstract][Full Text] [Related]
7. Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree. Cavalier-Smith T Biol Lett; 2010 Jun; 6(3):342-5. PubMed ID: 20031978 [TBL] [Abstract][Full Text] [Related]
8. Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. Baurain D; Brinkmann H; Petersen J; Rodríguez-Ezpeleta N; Stechmann A; Demoulin V; Roger AJ; Burger G; Lang BF; Philippe H Mol Biol Evol; 2010 Jul; 27(7):1698-709. PubMed ID: 20194427 [TBL] [Abstract][Full Text] [Related]
9. A revised six-kingdom system of life. Cavalier-Smith T Biol Rev Camb Philos Soc; 1998 Aug; 73(3):203-66. PubMed ID: 9809012 [TBL] [Abstract][Full Text] [Related]
10. Phylogeny of ultra-rapidly evolving dinoflagellate chloroplast genes: a possible common origin for sporozoan and dinoflagellate plastids. Zhang Z; Green BR; Cavalier-Smith T J Mol Evol; 2000 Jul; 51(1):26-40. PubMed ID: 10903370 [TBL] [Abstract][Full Text] [Related]
11. Did some red alga-derived plastids evolve via kleptoplastidy? A hypothesis. Bodył A Biol Rev Camb Philos Soc; 2018 Feb; 93(1):201-222. PubMed ID: 28544184 [TBL] [Abstract][Full Text] [Related]
12. Multigene phylogeny and cell evolution of chromist infrakingdom Rhizaria: contrasting cell organisation of sister phyla Cercozoa and Retaria. Cavalier-Smith T; Chao EE; Lewis R Protoplasma; 2018 Sep; 255(5):1517-1574. PubMed ID: 29666938 [TBL] [Abstract][Full Text] [Related]
13. Plastids and protein targeting. McFadden GI J Eukaryot Microbiol; 1999; 46(4):339-46. PubMed ID: 10461382 [TBL] [Abstract][Full Text] [Related]
14. Evidence for the retention of two evolutionary distinct plastids in dinoflagellates with diatom endosymbionts. Hehenberger E; Imanian B; Burki F; Keeling PJ Genome Biol Evol; 2014 Sep; 6(9):2321-34. PubMed ID: 25172904 [TBL] [Abstract][Full Text] [Related]
15. A new scenario of plastid evolution: plastid primary endosymbiosis before the divergence of the "Plantae," emended. Nozaki H J Plant Res; 2005 Aug; 118(4):247-55. PubMed ID: 16032387 [TBL] [Abstract][Full Text] [Related]
16. The number of symbiotic origins of organelles. Cavalier-Smith T Biosystems; 1992; 28(1-3):91-106; discussion 107-8. PubMed ID: 1292670 [TBL] [Abstract][Full Text] [Related]
17. The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. Rogers MB; Gilson PR; Su V; McFadden GI; Keeling PJ Mol Biol Evol; 2007 Jan; 24(1):54-62. PubMed ID: 16990439 [TBL] [Abstract][Full Text] [Related]
18. Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Fast NM; Kissinger JC; Roos DS; Keeling PJ Mol Biol Evol; 2001 Mar; 18(3):418-26. PubMed ID: 11230543 [TBL] [Abstract][Full Text] [Related]
19. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids. Nozaki H; Matsuzaki M; Takahara M; Misumi O; Kuroiwa H; Hasegawa M; Shin-i T; Kohara Y; Ogasawara N; Kuroiwa T J Mol Evol; 2003 Apr; 56(4):485-97. PubMed ID: 12664168 [TBL] [Abstract][Full Text] [Related]
20. Dinoflagellates with relic endosymbiont nuclei as models for elucidating organellogenesis. Sarai C; Tanifuji G; Nakayama T; Kamikawa R; Takahashi K; Yazaki E; Matsuo E; Miyashita H; Ishida KI; Iwataki M; Inagaki Y Proc Natl Acad Sci U S A; 2020 Mar; 117(10):5364-5375. PubMed ID: 32094181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]