BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 18092738)

  • 1. A reconstruction method for gappy and noisy arterial flow data.
    Yakhot A; Anor T; Karniadakis GE
    IEEE Trans Med Imaging; 2007 Dec; 26(12):1681-97. PubMed ID: 18092738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of numerical simulation strategies for ultrasonic color blood flow imaging, based on a computer and experimental model of the carotid artery.
    Swillens A; De Schryver T; Løvstakken L; Torp H; Segers P
    Ann Biomed Eng; 2009 Nov; 37(11):2188-99. PubMed ID: 19669881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy and reproducibility of CFD predicted wall shear stress using 3D ultrasound images.
    Augst AD; Barratt DC; Hughes AD; Glor FP; McG Thom SA; Xu XY
    J Biomech Eng; 2003 Apr; 125(2):218-22. PubMed ID: 12751283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of magnetic resonance imaging and image-based computational fluid dynamics for quantification of pulsatile flow in a carotid bifurcation phantom.
    Zhao SZ; Papathanasopoulou P; Long Q; Marshall I; Xu XY
    Ann Biomed Eng; 2003 Sep; 31(8):962-71. PubMed ID: 12918911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MRI and CFD studies of pulsatile flow in healthy and stenosed carotid bifurcation models.
    Marshall I; Zhao S; Papathanasopoulou P; Hoskins P; Xu Y
    J Biomech; 2004 May; 37(5):679-87. PubMed ID: 15046997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of turbulent flow effects on the vessel wall using four-dimensional flow MRI.
    Ziegler M; Lantz J; Ebbers T; Dyverfeldt P
    Magn Reson Med; 2017 Jun; 77(6):2310-2319. PubMed ID: 27350049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MRI measurement of wall shear stress vectors in bifurcation models and comparison with CFD predictions.
    Köhler U; Marshall I; Robertson MB; Long Q; Xu XY; Hoskins PR
    J Magn Reson Imaging; 2001 Nov; 14(5):563-73. PubMed ID: 11747008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Various issues relating to computational fluid dynamics simulations of carotid bifurcation flow based on models reconstructed from three-dimensional ultrasound images.
    Augst AD; Barratt DC; Hughes AD; Thom SA; Xu XY
    Proc Inst Mech Eng H; 2003; 217(5):393-403. PubMed ID: 14558652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a System for Measuring Wall Shear Stress in Blood Vessels using Magnetic Resonance Imaging and Computational Fluid Dynamics.
    Yoshida K; Nagao T; Okada K; Miyazaki S; Yang X; Yamazaki Y; Murase K
    Igaku Butsuri; 2008; 27(3):136-49. PubMed ID: 18367824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MRI measurement of time-resolved wall shear stress vectors in a carotid bifurcation model, and comparison with CFD predictions.
    Papathanasopoulou P; Zhao S; Köhler U; Robertson MB; Long Q; Hoskins P; Xu XY; Marshall I
    J Magn Reson Imaging; 2003 Feb; 17(2):153-62. PubMed ID: 12541221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reproducibility of image-based computational fluid dynamics models of the human carotid bifurcation.
    Thomas JB; Milner JS; Rutt BK; Steinman DA
    Ann Biomed Eng; 2003 Feb; 31(2):132-41. PubMed ID: 12627820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of boundary conditions for CFD simulation in human carotid artery.
    Xu P; Liu X; Zhang H; Ghista D; Zhang D; Shi C; Huang W
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1581-1597. PubMed ID: 29982960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative velocity investigations in cerebral arteries and aneurysms: 3D phase-contrast MR angiography, laser Doppler velocimetry and computational fluid dynamics.
    Hollnagel DI; Summers PE; Poulikakos D; Kollias SS
    NMR Biomed; 2009 Oct; 22(8):795-808. PubMed ID: 19412933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemodynamic parameters distribution of upstream, stenosis center, and downstream sides of plaques in carotid artery with different stenosis: a MRI and CFD study.
    Sui B; Gao P; Lin Y; Jing L; Sun S; Qin H
    Acta Radiol; 2015 Mar; 56(3):347-54. PubMed ID: 24676083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preliminary study of hemodynamic distribution in patient-specific stenotic carotid bifurcation by image-based computational fluid dynamics.
    Xue YJ; Gao PY; Duan Q; Lin Y; Dai CB
    Acta Radiol; 2008 Jun; 49(5):558-65. PubMed ID: 18568543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wall shear stress estimated with phase contrast MRI in an in vitro and in vivo intracranial aneurysm.
    van Ooij P; Potters WV; Guédon A; Schneiders JJ; Marquering HA; Majoie CB; vanBavel E; Nederveen AJ
    J Magn Reson Imaging; 2013 Oct; 38(4):876-84. PubMed ID: 23417769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Image-based carotid flow reconstruction: a comparison between MRI and ultrasound.
    Glor FP; Ariff B; Hughes AD; Crowe LA; Verdonck PR; Barratt DC; McG Thom SA; Firmin DN; Xu XY
    Physiol Meas; 2004 Dec; 25(6):1495-509. PubMed ID: 15712727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Merging computational fluid dynamics and 4D Flow MRI using proper orthogonal decomposition and ridge regression.
    Bakhshinejad A; Baghaie A; Vali A; Saloner D; Rayz VL; D'Souza RM
    J Biomech; 2017 Jun; 58():162-173. PubMed ID: 28577904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional blood velocity estimation with ultrasound: speckle tracking versus crossed-beam vector Doppler based on flow simulations in a carotid bifurcation model.
    Swillens A; Segers P; Torp H; Løvstakken L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):327-39. PubMed ID: 20178899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.