These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 18092738)

  • 21. Peak velocity measurements in tortuous arteries with phase contrast magnetic resonance imaging: the effect of multidirectional velocity encoding.
    Schubert T; Bieri O; Pansini M; Stippich C; Santini F
    Invest Radiol; 2014 Apr; 49(4):189-94. PubMed ID: 24300842
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regularization of flow streamlines in multislice phase-contrast MR imaging.
    Fatouraee N; Amini AA
    IEEE Trans Med Imaging; 2003 Jun; 22(6):699-709. PubMed ID: 12872945
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calculation of the magnetization distribution for fluid flow in curved vessels.
    Jou LD; van Tyen R; Berger SA; Saloner D
    Magn Reson Med; 1996 Apr; 35(4):577-84. PubMed ID: 8992209
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Towards quantitative evaluation of wall shear stress from 4D flow imaging.
    Levilly S; Castagna M; Idier J; Bonnefoy F; Le Touzé D; Moussaoui S; Paul-Gilloteaux P; Serfaty JM
    Magn Reson Imaging; 2020 Dec; 74():232-243. PubMed ID: 32889090
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D dynamical ultrasonic model of pulsating vessel walls.
    Balocco S; Basset O; Courbebaisse G; Delachartre P; Tortoli P; Cachard C
    Ultrasonics; 2006 Dec; 44 Suppl 1():e179-83. PubMed ID: 16857232
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects.
    Milner JS; Moore JA; Rutt BK; Steinman DA
    J Vasc Surg; 1998 Jul; 28(1):143-56. PubMed ID: 9685141
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparison of estimation methods for computational fluid dynamics outflow boundary conditions using patient-specific carotid artery.
    Lee CJ; Uemiya N; Ishihara S; Zhang Y; Qian Y
    Proc Inst Mech Eng H; 2013 Jun; 227(6):663-71. PubMed ID: 23636745
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-rank and sparse matrix decomposition for compressed sensing reconstruction of magnetic resonance 4D phase contrast blood flow imaging (loSDeCoS 4D-PCI).
    Hutter J; Schmitt P; Aandal G; Greiser A; Forman C; Grimm R; Horneggert J; Maier A
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 1):558-65. PubMed ID: 24505711
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D velocity field and flow profile reconstruction from arbitrarily sampled Doppler ultrasound data.
    Zettinig O; Hennersperger C; Schulte Zu Berge C; Baust M; Navab N
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):611-8. PubMed ID: 25485430
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of shear stress on the wall of the carotid artery using magnetic resonance imaging and computational fluid dynamics.
    Yim P; Demarco K; Castro MA; Cebral J
    Stud Health Technol Inform; 2005; 113():412-42. PubMed ID: 15923751
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A viscoelastic model of arterial wall motion in pulsatile flow: implications for Doppler ultrasound clutter assessment.
    Warriner RK; Johnston KW; Cobbold RS
    Physiol Meas; 2008 Feb; 29(2):157-79. PubMed ID: 18256449
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flow artifact removal in carotid wall imaging based on black and gray-blood dual-contrast images subtraction.
    Li H; Li B; Huang W; Dong L; Zhang J
    Magn Reson Med; 2017 Apr; 77(4):1612-1618. PubMed ID: 27018428
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 4D Dark blood arterial wall magnetic resonance imaging: methodology and demonstration in the carotid arteries.
    Koktzoglou I
    Magn Reson Med; 2013 Apr; 69(4):956-65. PubMed ID: 23400824
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reproducibility study of magnetic resonance image-based computational fluid dynamics prediction of carotid bifurcation flow.
    Glor FP; Long Q; Hughes AD; Augst AD; Ariff B; Thom SA; Verdonck PR; Xu XY
    Ann Biomed Eng; 2003 Feb; 31(2):142-51. PubMed ID: 12627821
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimation methods for flow imaging with high frequency ultrasound.
    Aoudi W; Liebgott H; Needles A; Yang V; Foster FS; Vray D
    Ultrasonics; 2006 Dec; 44 Suppl 1():e135-40. PubMed ID: 16844170
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preliminary study of hemodynamics in human carotid bifurcation by computational fluid dynamics combined with magnetic resonance angiography.
    Xue Y; Gao P; Lin Y; Dai C
    Acta Radiol; 2007 Sep; 48(7):788-97. PubMed ID: 17729012
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 4D model of hemodynamics in the abdominal aorta.
    Zbicinski I; Veshkina N; Stefańczyk L
    Biomed Mater Eng; 2015; 26 Suppl 1():S257-64. PubMed ID: 26406010
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3-D Flow Reconstruction Using Divergence-Free Interpolation of Multiple 2-D Contrast-Enhanced Ultrasound Particle Imaging Velocimetry Measurements.
    Zhou X; Papadopoulou V; Leow CH; Vincent P; Tang MX
    Ultrasound Med Biol; 2019 Mar; 45(3):795-810. PubMed ID: 30616909
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contrast-enhanced micro-CT imaging in murine carotid arteries: a new protocol for computing wall shear stress.
    Xing R; De Wilde D; McCann G; Ridwan Y; Schrauwen JT; van der Steen AF; Gijsen FJ; Van der Heiden K
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):156. PubMed ID: 28155699
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational patient-specific models based on 3-D ultrasound data to quantify uterine arterial flow during pregnancy.
    Pennati G; Socci L; Rigano S; Boito S; Ferrazzi E
    IEEE Trans Med Imaging; 2008 Dec; 27(12):1715-22. PubMed ID: 19033087
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.