BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 18092831)

  • 1. Homology modeling of wild-type, D516V, and H526L Mycobacterium tuberculosis RNA polymerase and their molecular docking study with inhibitors.
    Josa D; da Cunha EF; Ramalho TC; Souza TC; Caetano MS
    J Biomol Struct Dyn; 2008 Feb; 25(4):373-6. PubMed ID: 18092831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular modeling of Mycobacterium tuberculosis DNA gyrase and its molecular docking study with gatifloxacin inhibitors.
    da Cunha EE; Barbosa EF; Oliveira AA; Ramalho TC
    J Biomol Struct Dyn; 2010 Apr; 27(5):619-25. PubMed ID: 20085379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rifamycin inhibition of WT and Rif-resistant Mycobacterium tuberculosis and Escherichia coli RNA polymerases in vitro.
    Gill SK; Garcia GA
    Tuberculosis (Edinb); 2011 Sep; 91(5):361-9. PubMed ID: 21704562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of a high-density DNA probe array for detecting mutations involved in rifampicin resistance in Mycobacterium tuberculosis.
    Sougakoff W; Rodrigue M; Truffot-Pernot C; Renard M; Durin N; Szpytma M; Vachon R; Troesch A; Jarlier V
    Clin Microbiol Infect; 2004 Apr; 10(4):289-94. PubMed ID: 15059116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipiarmycin targets RNA polymerase and has good activity against multidrug-resistant strains of Mycobacterium tuberculosis.
    Kurabachew M; Lu SH; Krastel P; Schmitt EK; Suresh BL; Goh A; Knox JE; Ma NL; Jiricek J; Beer D; Cynamon M; Petersen F; Dartois V; Keller T; Dick T; Sambandamurthy VK
    J Antimicrob Chemother; 2008 Oct; 62(4):713-9. PubMed ID: 18587134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-resistance between rifampicin and KRM-1648 is associated with specific rpoB alleles in Mycobacterium tuberculosis.
    Park YK; Kim BJ; Ryu S; Kook YH; Choe YK; Bai GH; Kim SJ
    Int J Tuberc Lung Dis; 2002 Feb; 6(2):166-70. PubMed ID: 11931418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [RNA polymerase-rifamycin. A molecular model of inhibition].
    Chertov OIu; Obukhov AN; Lipkin VM
    Bioorg Khim; 1983 May; 9(5):633-40. PubMed ID: 6207842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent trends in rifamycin research.
    Lal R; Lal S
    Bioessays; 1994 Mar; 16(3):211-6. PubMed ID: 7513153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of new antibacterial targets in RNA polymerase of Mycobacterium tuberculosis by detecting positive selection sites.
    Wang Q; Xu Y; Gu Z; Liu N; Jin K; Li Y; Crabbe MJC; Zhong Y
    Comput Biol Chem; 2018 Apr; 73():25-30. PubMed ID: 29413813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations in the beginning of the rpoB gene can induce resistance to rifamycins in both Helicobacter pylori and Mycobacterium tuberculosis.
    Heep M; Rieger U; Beck D; Lehn N
    Antimicrob Agents Chemother; 2000 Apr; 44(4):1075-7. PubMed ID: 10722516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lost in transcription--inhibition of RNA polymerase.
    Haebich D; von Nussbaum F
    Angew Chem Int Ed Engl; 2009; 48(19):3397-400. PubMed ID: 19294713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computational model of the inhibition of Mycobacterium tuberculosis ATPase by a new drug candidate R207910.
    de Jonge MR; Koymans LH; Guillemont JE; Koul A; Andries K
    Proteins; 2007 Jun; 67(4):971-80. PubMed ID: 17387738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations outside the rifampicin resistance-determining region associated with rifampicin resistance in Mycobacterium tuberculosis.
    Siu GK; Zhang Y; Lau TC; Lau RW; Ho PL; Yew WW; Tsui SK; Cheng VC; Yuen KY; Yam WC
    J Antimicrob Chemother; 2011 Apr; 66(4):730-3. PubMed ID: 21393153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rifamycin-mode of action, resistance, and biosynthesis.
    Floss HG; Yu TW
    Chem Rev; 2005 Feb; 105(2):621-32. PubMed ID: 15700959
    [No Abstract]   [Full Text] [Related]  

  • 15. A novel inhibitor of indole-3-glycerol phosphate synthase with activity against multidrug-resistant Mycobacterium tuberculosis.
    Shen H; Wang F; Zhang Y; Huang Q; Xu S; Hu H; Yue J; Wang H
    FEBS J; 2009 Jan; 276(1):144-54. PubMed ID: 19032598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-activity relationship studies of new rifamycins containing l-amino acid esters as inhibitors of bacterial RNA polymerases.
    Czerwonka D; Domagalska J; Pyta K; Kubicka MM; Pecyna P; Gajecka M; Przybylski P
    Eur J Med Chem; 2016 Jun; 116():216-221. PubMed ID: 27061985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and characterization of anthranilate synthase component I (TrpE) from Mycobacterium tuberculosis H37Rv.
    Lin X; Xu S; Yang Y; Wu J; Wang H; Shen H; Wang H
    Protein Expr Purif; 2009 Mar; 64(1):8-15. PubMed ID: 18952181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular modeling of Mycobacterium tuberculosis dUTpase: docking and catalytic mechanism studies.
    Ramalho TC; Caetano MS; Josa D; Luz GP; Freitas EA; da Cunha EF
    J Biomol Struct Dyn; 2011 Jun; 28(6):907-17. PubMed ID: 21469751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Allosteric modulation of the RNA polymerase catalytic reaction is an essential component of transcription control by rifamycins.
    Artsimovitch I; Vassylyeva MN; Svetlov D; Svetlov V; Perederina A; Igarashi N; Matsugaki N; Wakatsuki S; Tahirov TH; Vassylyev DG
    Cell; 2005 Aug; 122(3):351-63. PubMed ID: 16096056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The three-dimensional structures of the Mycobacterium tuberculosis dihydrodipicolinate reductase-NADH-2,6-PDC and -NADPH-2,6-PDC complexes. Structural and mutagenic analysis of relaxed nucleotide specificity.
    Cirilli M; Zheng R; Scapin G; Blanchard JS
    Biochemistry; 2003 Sep; 42(36):10644-50. PubMed ID: 12962488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.