These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 18092880)

  • 1. Release of adsorbed polycyclic aromatic hydrocarbons under cosolvent treatment: implications for availability and fate.
    Chen W; Cong L; Hu H; Zhang P; Li J; Feng Z; Kan AT; Tomson MB
    Environ Toxicol Chem; 2008 Jan; 27(1):112-8. PubMed ID: 18092880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resistant desorption of hydrophobic organic contaminants in typical chinese soils: implications for long-term fate and soil quality standards.
    Yang W; Duan L; Zhang N; Zhang C; Shipley HJ; Kan AT; Tomson MB; Chen W
    Environ Toxicol Chem; 2008 Jan; 27(1):235-42. PubMed ID: 18092865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of chemical oxidation on sorption and desorption of PAHs in typical Chinese soils.
    Chen W; Hou L; Luo X; Zhu L
    Environ Pollut; 2009 Jun; 157(6):1894-903. PubMed ID: 19233529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A rapid experimental protocol to determine the desorption resistant fraction of sediment-sorbed hydrophobic organic contaminants.
    Zhang P; Huang S; Kan AT; Tomson MB
    Environ Sci Pollut Res Int; 2020 Jan; 27(2):1449-1460. PubMed ID: 31748989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioavailability of polycyclic aromatic hydrocarbons sequestered in sediment: microbial study and model prediction.
    Beckles DM; Chen W; Hughes JB
    Environ Toxicol Chem; 2007 May; 26(5):878-83. PubMed ID: 17521132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Desorption of polycyclic aromatic hydrocarbons in soils assisted by SPMD].
    Sun HW; Huo C; Wang CP
    Huan Jing Ke Xue; 2007 Aug; 28(8):1841-6. PubMed ID: 17926421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced solubilization and removal of naphthalene and phenanthrene by cyclodextrins from two contaminated soils.
    Badr T; Hanna K; de Brauer C
    J Hazard Mater; 2004 Aug; 112(3):215-23. PubMed ID: 15302442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cosolvent effects of phenanthrene sorption-desorption on a freshwater sediment.
    Bouchard DC
    Environ Toxicol Chem; 2003 Apr; 22(4):736-40. PubMed ID: 12685706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Desorption of phenanthrene and pyrene in soils by root exudates.
    Gao Y; Ren L; Ling W; Gong S; Sun B; Zhang Y
    Bioresour Technol; 2010 Feb; 101(4):1159-65. PubMed ID: 19833507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption and desorption of chlorpyrifos to soils and sediments.
    Gebremariam SY; Beutel MW; Yonge DR; Flury M; Harsh JB
    Rev Environ Contam Toxicol; 2012; 215():123-75. PubMed ID: 22057931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partitioning and desorption behavior of polycyclic aromatic hydrocarbons from disparate sources.
    Reeves WR; McDonald TJ; Cizmas L; Donnelly KC
    Sci Total Environ; 2004 Oct; 332(1-3):183-92. PubMed ID: 15336901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling biphasic sorption and desorption of hydrophobic organic contaminants in sediments.
    Chai Y; Kochetkov A; Reible DD
    Environ Toxicol Chem; 2006 Dec; 25(12):3133-40. PubMed ID: 17220081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model-aided characterization of Tenax-TA for aromatic compound uptake from water.
    Zhao D; Pignatello JJ
    Environ Toxicol Chem; 2004 Jul; 23(7):1592-9. PubMed ID: 15230310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring aqueous solubility in the presence of small cosolvent volume fractions by passive dosing.
    Kwon HC; Kwon JH
    Environ Sci Technol; 2012 Nov; 46(22):12550-6. PubMed ID: 23088587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. More realistic soil cleanup standards with dual-equilibrium desorption.
    Chen W; Kan AT; Newell CJ; Moore E; Tomson MB
    Ground Water; 2002; 40(2):153-64. PubMed ID: 11916120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Desorption kinetics of naphthalene from sediment particles: batch and stepwise desorption approach.
    Hsieh PC; Lee CL; Chiu AA
    Water Sci Technol; 2010; 61(4):1011-7. PubMed ID: 20182081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Desorption resistance of polycyclic aromatic hydrocarbons and duration of exposure.
    Chai Y; Kochetkov A; Reible DD
    Environ Toxicol Chem; 2006 Nov; 25(11):2827-33. PubMed ID: 17089703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Naphthalene and phenanthrene sorption to very low organic content diatomaceous earth: modeling implications for microbial bioavailability.
    Mittal M; Rockne KJ
    Chemosphere; 2009 Feb; 74(8):1134-44. PubMed ID: 19058832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wetland plant uptake of desorption-resistant organic compounds from sediments.
    Gomez-Hermosillo C; Pardue JH; Reible DD
    Environ Sci Technol; 2006 May; 40(10):3229-36. PubMed ID: 16749686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PAH repartitioning in field-contaminated sediment following removal of the labile chemical fraction.
    Birdwell JE; Thibodeaux LJ
    Environ Sci Technol; 2009 Nov; 43(21):8092-7. PubMed ID: 19924928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.