These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 18092906)
1. Implementation of microarrays for Methylobacterium extorquens AM1. Okubo Y; Skovran E; Guo X; Sivam D; Lidstrom ME OMICS; 2007; 11(4):325-40. PubMed ID: 18092906 [TBL] [Abstract][Full Text] [Related]
2. Genetic and phenotypic comparison of facultative methylotrophy between Methylobacterium extorquens strains PA1 and AM1. Nayak DD; Marx CJ PLoS One; 2014; 9(9):e107887. PubMed ID: 25232997 [TBL] [Abstract][Full Text] [Related]
3. Methylobacterium extorquens AM1 produces a novel type of acyl-homoserine lactone with a double unsaturated side chain under methylotrophic growth conditions. Nieto Penalver CG; Morin D; Cantet F; Saurel O; Milon A; Vorholt JA FEBS Lett; 2006 Jan; 580(2):561-7. PubMed ID: 16412429 [TBL] [Abstract][Full Text] [Related]
4. Co-consumption of methanol and succinate by Methylobacterium extorquens AM1. Peyraud R; Kiefer P; Christen P; Portais JC; Vorholt JA PLoS One; 2012; 7(11):e48271. PubMed ID: 23133625 [TBL] [Abstract][Full Text] [Related]
5. Sign epistasis limits evolutionary trade-offs at the confluence of single- and multi-carbon metabolism in Methylobacterium extorquens AM1. Carroll SM; Lee MC; Marx CJ Evolution; 2014 Mar; 68(3):760-71. PubMed ID: 24164359 [TBL] [Abstract][Full Text] [Related]
6. Comprehensive proteomics of Methylobacterium extorquens AM1 metabolism under single carbon and nonmethylotrophic conditions. Bosch G; Skovran E; Xia Q; Wang T; Taub F; Miller JA; Lidstrom ME; Hackett M Proteomics; 2008 Sep; 8(17):3494-505. PubMed ID: 18686303 [TBL] [Abstract][Full Text] [Related]
7. Metabolite profiling analysis of Methylobacterium extorquens AM1 by comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. Guo X; Lidstrom ME Biotechnol Bioeng; 2008 Mar; 99(4):929-40. PubMed ID: 17879968 [TBL] [Abstract][Full Text] [Related]
8. Methylobacterium extorquens: methylotrophy and biotechnological applications. Ochsner AM; Sonntag F; Buchhaupt M; Schrader J; Vorholt JA Appl Microbiol Biotechnol; 2015 Jan; 99(2):517-34. PubMed ID: 25432674 [TBL] [Abstract][Full Text] [Related]
9. Reconstruction of C(3) and C(4) metabolism in Methylobacterium extorquens AM1 using transposon mutagenesis. Van Dien SJ; Okubo Y; Hough MT; Korotkova N; Taitano T; Lidstrom ME Microbiology (Reading); 2003 Mar; 149(Pt 3):601-609. PubMed ID: 12634329 [TBL] [Abstract][Full Text] [Related]
10. A systems biology approach uncovers cellular strategies used by Methylobacterium extorquens AM1 during the switch from multi- to single-carbon growth. Skovran E; Crowther GJ; Guo X; Yang S; Lidstrom ME PLoS One; 2010 Nov; 5(11):e14091. PubMed ID: 21124828 [TBL] [Abstract][Full Text] [Related]
11. Stoichiometric model for evaluating the metabolic capabilities of the facultative methylotroph Methylobacterium extorquens AM1, with application to reconstruction of C(3) and C(4) metabolism. Van Dien SJ; Lidstrom ME Biotechnol Bioeng; 2002 May; 78(3):296-312. PubMed ID: 11920446 [TBL] [Abstract][Full Text] [Related]
12. Discovery of rare protein-coding genes in model methylotroph Methylobacterium extorquens AM1. Kumar D; Mondal AK; Yadav AK; Dash D Proteomics; 2014 Dec; 14(23-24):2790-4. PubMed ID: 25158906 [TBL] [Abstract][Full Text] [Related]
13. Identification of a fourth formate dehydrogenase in Methylobacterium extorquens AM1 and confirmation of the essential role of formate oxidation in methylotrophy. Chistoserdova L; Crowther GJ; Vorholt JA; Skovran E; Portais JC; Lidstrom ME J Bacteriol; 2007 Dec; 189(24):9076-81. PubMed ID: 17921299 [TBL] [Abstract][Full Text] [Related]
14. Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view. Chistoserdova L; Chen SW; Lapidus A; Lidstrom ME J Bacteriol; 2003 May; 185(10):2980-7. PubMed ID: 12730156 [No Abstract] [Full Text] [Related]
15. Difference in C3-C4 metabolism underlies tradeoff between growth rate and biomass yield in Methylobacterium extorquens AM1. Fu Y; Beck DA; Lidstrom ME BMC Microbiol; 2016 Jul; 16(1):156. PubMed ID: 27435978 [TBL] [Abstract][Full Text] [Related]
16. Replacing the Ethylmalonyl-CoA Pathway with the Glyoxylate Shunt Provides Metabolic Flexibility in the Central Carbon Metabolism of Methylobacterium extorquens AM1. Schada von Borzyskowski L; Sonntag F; Pöschel L; Vorholt JA; Schrader J; Erb TJ; Buchhaupt M ACS Synth Biol; 2018 Jan; 7(1):86-97. PubMed ID: 29216425 [TBL] [Abstract][Full Text] [Related]
17. Bioconversion of methanol to value-added mevalonate by engineered Methylobacterium extorquens AM1 containing an optimized mevalonate pathway. Zhu WL; Cui JY; Cui LY; Liang WF; Yang S; Zhang C; Xing XH Appl Microbiol Biotechnol; 2016 Mar; 100(5):2171-82. PubMed ID: 26521242 [TBL] [Abstract][Full Text] [Related]
18. Methenyl-Dephosphotetrahydromethanopterin Is a Regulatory Signal for Acclimation to Changes in Substrate Availability in Methylobacterium extorquens AM1. Martinez-Gomez NC; Good NM; Lidstrom ME J Bacteriol; 2015 Jun; 197(12):2020-6. PubMed ID: 25845846 [TBL] [Abstract][Full Text] [Related]
19. Physiological analysis of Methylobacterium extorquens AM1 grown in continuous and batch cultures. Guo X; Lidstrom ME Arch Microbiol; 2006 Aug; 186(2):139-49. PubMed ID: 16821027 [TBL] [Abstract][Full Text] [Related]
20. Comparison of the proteome of Methylobacterium extorquens AM1 grown under methylotrophic and nonmethylotrophic conditions. Laukel M; Rossignol M; Borderies G; Völker U; Vorholt JA Proteomics; 2004 May; 4(5):1247-64. PubMed ID: 15188393 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]