BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 18093055)

  • 1. Changing forest disturbance regimes and risk perceptions in Homer, Alaska.
    Flint CG
    Risk Anal; 2007 Dec; 27(6):1597-608. PubMed ID: 18093055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conifer defense against insects: proteome analysis of Sitka spruce (Picea sitchensis) bark induced by mechanical wounding or feeding by white pine weevils (Pissodes strobi).
    Lippert D; Chowrira S; Ralph SG; Zhuang J; Aeschliman D; Ritland C; Ritland K; Bohlmann J
    Proteomics; 2007 Jan; 7(2):248-70. PubMed ID: 17205607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate variability and spruce beetle (Dendroctonus rufipennis) outbreaks in south-central and southwest Alaska.
    Sherriff RL; Berg EE; Miller AE
    Ecology; 2011 Jul; 92(7):1459-70. PubMed ID: 21870620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linking local perceptions to the biophysical and amenity contexts of forest disturbance in Colorado.
    Flint C; Qin H; Ganning JP
    Environ Manage; 2012 Mar; 49(3):553-69. PubMed ID: 22270910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perceptions of ecological risk associated with mountain pine beetle (Dendroctonus ponderosae) infestations in Banff and Kootenay National Parks of Canada.
    McFarlane BL; Watson DO
    Risk Anal; 2008 Feb; 28(1):203-12. PubMed ID: 18304117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developing semiochemical repellents for protecting Picea from Dendroctonus rufipennis (Coleoptera: Curculionidae) in Alaska and Utah, USA.
    Audley JP; Fettig CJ; Moan JE; Moan J; Swenson S; Munson AS; Mortenson LA; Blackford DC; Graham EE; Mafra-Neto A
    J Econ Entomol; 2024 Jun; 117(3):1022-1031. PubMed ID: 38648181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current and projected cumulative impacts of fire, drought, and insects on timber volumes across Canada.
    Boucher D; Boulanger Y; Aubin I; Bernier PY; Beaudoin A; Guindon L; Gauthier S
    Ecol Appl; 2018 Jul; 28(5):1245-1259. PubMed ID: 29645330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Site Thermal Variation and Physiography on Flight Synchrony and Phenology of the North American Spruce Beetle (Coleoptera: Curculionidae, Scolytinae) and Associated Species in Colorado.
    Dell IH; Davis TS
    Environ Entomol; 2019 Aug; 48(4):998-1011. PubMed ID: 31145459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Negative feedbacks on bark beetle outbreaks: widespread and severe spruce beetle infestation restricts subsequent infestation.
    Hart SJ; Veblen TT; Mietkiewicz N; Kulakowski D
    PLoS One; 2015; 10(5):e0127975. PubMed ID: 26000906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in Semiochemical Repellents to Mitigate Host Mortality From the Spruce Beetle (Coleoptera: Curculionidae).
    Hansen EM; Munson AS; Wakarchuk D; Blackford DC; Graves AD; Stephens SS; Moan JE
    J Econ Entomol; 2019 Sep; 112(5):2253-2261. PubMed ID: 31237949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring resistance and resilience using carbon trajectories: Analysis of forest management-disturbance interactions.
    Davis TS; Meddens AJH; Stevens-Rumann CS; Jansen VS; Sibold JS; Battaglia MA
    Ecol Appl; 2022 Dec; 32(8):e2704. PubMed ID: 35801514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human dimensions of forest disturbance by insects: an international synthesis.
    Flint CG; McFarlane B; Müller M
    Environ Manage; 2009 Jun; 43(6):1174-86. PubMed ID: 18773237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MCH released in a novel pheromone dispenser prevents spruce beetle, Dendroctonus rufipennis (Coleoptera: Scolytidae), attacks in south-central Alaska.
    Holsten EH; Shea PJ; Borys RR
    J Econ Entomol; 2003 Feb; 96(1):31-4. PubMed ID: 12650341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An evaluation of British Columbian beetle-killed hybrid spruce for bioethanol production.
    Berlin A; Muñoz C; Gilkes N; Alamouti SM; Chung P; Kang KY; Maximenko V; Baeza J; Freer J; Mendonça R; Saddler J
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):267-80. PubMed ID: 18478394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Western spruce budworm outbreaks did not increase fire risk over the last three centuries: a dendrochronological analysis of inter-disturbance synergism.
    Flower A; Gavin DG; Heyerdahl EK; Parsons RA; Cohn GM
    PLoS One; 2014; 9(12):e114282. PubMed ID: 25526633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Summer and winter drought drive the initiation and spread of spruce beetle outbreak.
    Hart SJ; Veblen TT; Schneider D; Molotch NP
    Ecology; 2017 Oct; 98(10):2698-2707. PubMed ID: 28752623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forest microsite effects on community composition of ectomycorrhizal fungi on seedlings of Picea abies and Betula pendula.
    Tedersoo L; Suvi T; Jairus T; Kõljalg U
    Environ Microbiol; 2008 May; 10(5):1189-201. PubMed ID: 18266759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unifying wildfire models from ecology and statistical physics.
    Zinck RD; Grimm V
    Am Nat; 2009 Nov; 174(5):E170-85. PubMed ID: 19799499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joint Spatial Modeling of Recurrent Infection and Growth with Processes under Intermittent Observation.
    Nathoo FS
    Biometrics; 2010 Jun; 66(2):336-46. PubMed ID: 19673862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mountain pine beetle and forest carbon feedback to climate change.
    Kurz WA; Dymond CC; Stinson G; Rampley GJ; Neilson ET; Carroll AL; Ebata T; Safranyik L
    Nature; 2008 Apr; 452(7190):987-90. PubMed ID: 18432244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.