These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 18093144)
21. A comparison of enumeration methods for culturable Pseudomonas fluorescens cells marked with green fluorescent protein. Cassidy MB; Leung KT; Lee H; Trevors JT J Microbiol Methods; 2000 Apr; 40(2):135-45. PubMed ID: 10699669 [TBL] [Abstract][Full Text] [Related]
22. Rhizoremediation of trichloroethylene by a recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenase constitutively. Yee DC; Maynard JA; Wood TK Appl Environ Microbiol; 1998 Jan; 64(1):112-8. PubMed ID: 9435067 [TBL] [Abstract][Full Text] [Related]
23. Numbers and locations of native bacteria on field-grown wheat roots quantified by fluorescence in situ hybridization (FISH). Watt M; Hugenholtz P; White R; Vinall K Environ Microbiol; 2006 May; 8(5):871-84. PubMed ID: 16623744 [TBL] [Abstract][Full Text] [Related]
24. Plants--rhizospheric organisms interaction in a manmade system with and without biogenous element limitation. Somova LA; Pechurkin NS; Polonsky VI; Pisman TI; Sarangova AB; Andre M; Sadovskaya GM Adv Space Res; 1997; 20(10):1939-43. PubMed ID: 11542573 [TBL] [Abstract][Full Text] [Related]
25. Integrated bioinformatic and phenotypic analysis of RpoN-dependent traits in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25. Jones J; Studholme DJ; Knight CG; Preston GM Environ Microbiol; 2007 Dec; 9(12):3046-64. PubMed ID: 17991033 [TBL] [Abstract][Full Text] [Related]
26. Versatile use of Azospirillum brasilense strains tagged with egfp and mCherry genes for the visualization of biofilms associated with wheat roots. Ramirez-Mata A; Pacheco MR; Moreno SJ; Xiqui-Vazquez ML; Baca BE Microbiol Res; 2018 Oct; 215():155-163. PubMed ID: 30172303 [TBL] [Abstract][Full Text] [Related]
27. Construction and validation of a neutrally-marked strain of Pseudomonas fluorescens SBW25. Zhang XX; Rainey PB J Microbiol Methods; 2007 Oct; 71(1):78-81. PubMed ID: 17669526 [TBL] [Abstract][Full Text] [Related]
28. Use of a lux-based procedure to rapidly visualize root colonisation by Pseudomonas fluorescens in the wheat rhizosphere. de Weger LA; Kuiper I; van der Bij AJ; Lugtenberg BJ Antonie Van Leeuwenhoek; 1997 Nov; 72(4):365-72. PubMed ID: 9442276 [TBL] [Abstract][Full Text] [Related]
29. Effect of nematodes on rhizosphere colonization by seed-applied bacteria. Knox OG; Killham K; Artz RR; Mullins C; Wilson M Appl Environ Microbiol; 2004 Aug; 70(8):4666-71. PubMed ID: 15294800 [TBL] [Abstract][Full Text] [Related]
30. Endophytic colonization of olive roots by the biocontrol strain Pseudomonas fluorescens PICF7. Prieto P; Mercado-Blanco J FEMS Microbiol Ecol; 2008 May; 64(2):297-306. PubMed ID: 18336554 [TBL] [Abstract][Full Text] [Related]
31. Survival and ecological fitness of Pseudomonas fluorescens genetically engineered with dual biocontrol mechanisms. Bainton NJ; Lynch JM; Naseby D; Way JA Microb Ecol; 2004 Oct; 48(3):349-57. PubMed ID: 15692855 [TBL] [Abstract][Full Text] [Related]
32. An attempt to protect winter wheat against Gaeumannomyces graminis var. tritici by the use of rhizobacteria Pseudomonas fluorescens and Bacillus mycoides. Czaban J; Ksiezniak A; Wróblewska B; Paszkowski WL Pol J Microbiol; 2004; 53(2):101-10. PubMed ID: 15478355 [TBL] [Abstract][Full Text] [Related]
33. The effect of plant growth-promoting rhizobacteria on asparagus seedlings and germinating seeds subjected to water stress under greenhouse conditions. Liddycoat SM; Greenberg BM; Wolyn DJ Can J Microbiol; 2009 Apr; 55(4):388-94. PubMed ID: 19396238 [TBL] [Abstract][Full Text] [Related]
34. Regulation of copper homeostasis in Pseudomonas fluorescens SBW25. Zhang XX; Rainey PB Environ Microbiol; 2008 Dec; 10(12):3284-94. PubMed ID: 18707611 [TBL] [Abstract][Full Text] [Related]
35. Effect of bacterial population density on germination wheat seeds and dynamics of simple artificial ecosystems. Somova LA; Pechurkin NS; Sarangova AB; Pisman TI Adv Space Res; 2001; 27(9):1611-5. PubMed ID: 11695444 [TBL] [Abstract][Full Text] [Related]
36. Biological control of apple blue mold with Pseudomonas fluorescens. Etebarian HR; Sholberg PL; Eastwell KC; Sayler RJ Can J Microbiol; 2005 Jul; 51(7):591-8. PubMed ID: 16175208 [TBL] [Abstract][Full Text] [Related]
37. Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25. Preston GM; Bertrand N; Rainey PB Mol Microbiol; 2001 Sep; 41(5):999-1014. PubMed ID: 11555282 [TBL] [Abstract][Full Text] [Related]
38. An attempt to protect winter wheat against Fusarium culmorum by the use of rhizobacteria Pseudomonas fluorescens and Bacillus mycoides. Czaban J; Ksiezniak A; Perzyński A Pol J Microbiol; 2004; 53(3):175-82. PubMed ID: 15702917 [TBL] [Abstract][Full Text] [Related]
39. Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Péchy-Tarr M; Bruck DJ; Maurhofer M; Fischer E; Vogne C; Henkels MD; Donahue KM; Grunder J; Loper JE; Keel C Environ Microbiol; 2008 Sep; 10(9):2368-86. PubMed ID: 18484997 [TBL] [Abstract][Full Text] [Related]
40. Fate of Escherichia coli during ensiling of wheat and corn. Chen Y; Sela S; Gamburg M; Pinto R; Weinberg ZG Appl Environ Microbiol; 2005 Sep; 71(9):5163-70. PubMed ID: 16151100 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]