BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 18093365)

  • 21. Interaction between rod and cone inputs in mixed-input bipolar cells in goldfish retina.
    Joselevitch C; Kamermans M
    J Neurosci Res; 2007 May; 85(7):1579-91. PubMed ID: 17342779
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Type 3a and type 3b OFF cone bipolar cells provide for the alternative rod pathway in the mouse retina.
    Mataruga A; Kremmer E; Müller F
    J Comp Neurol; 2007 Jun; 502(6):1123-37. PubMed ID: 17447251
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequential pictorial presentation of neural interaction in the retina. 2. The depolarizing and hyperpolarizing bipolar cells at rod terminals.
    Sjöstrand FS
    J Submicrosc Cytol Pathol; 2002 Jan; 34(1):85-98. PubMed ID: 11989859
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Patch-clamp recording of human retinal photoreceptors and bipolar cells.
    Ohkuma M; Kawai F; Horiguchi M; Miyachi E
    Photochem Photobiol; 2007; 83(2):317-22. PubMed ID: 16995772
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Center-surround organization in bipolar cells: symmetry for opposing contrasts.
    Fahey PK; Burkhardt DA
    Vis Neurosci; 2003; 20(1):1-10. PubMed ID: 12699078
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kainate receptors mediate synaptic transmission between cones and 'Off' bipolar cells in a mammalian retina.
    DeVries SH; Schwartz EA
    Nature; 1999 Jan; 397(6715):157-60. PubMed ID: 9923677
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The midget-parvocellular pathway of marmoset retina: a quantitative light microscopic study.
    Telkes I; Lee SC; Jusuf PR; Grünert U
    J Comp Neurol; 2008 Oct; 510(5):539-49. PubMed ID: 18683219
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synaptic inputs from rods and cones to horizontal cells in the tiger salamander retina.
    Yang XL; Wu SM
    Sci China B; 1990 Aug; 33(8):946-54. PubMed ID: 2242218
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rod and cone photoreceptors: molecular basis of the difference in their physiology.
    Kawamura S; Tachibanaki S
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Aug; 150(4):369-77. PubMed ID: 18514002
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immunocytochemical analysis of photoreceptors in the tiger salamander retina.
    Zhang J; Wu SM
    Vision Res; 2009 Jan; 49(1):64-73. PubMed ID: 18977238
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Light adaptation in cone vision involves switching between receptor and post-receptor sites.
    Dunn FA; Lankheet MJ; Rieke F
    Nature; 2007 Oct; 449(7162):603-6. PubMed ID: 17851533
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fine structure of the retinal photoreceptors of the tiger salamander (Ambystoma tigrinum).
    Braekevelt CR
    Histol Histopathol; 1993 Apr; 8(2):265-72. PubMed ID: 8490253
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Encoding light intensity by the cone photoreceptor synapse.
    Choi SY; Borghuis BG; Rea R; Levitan ES; Sterling P; Kramer RH
    Neuron; 2005 Nov; 48(4):555-62. PubMed ID: 16301173
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antagonistic chromatic mechanisms in photoreceptors of the parietal eye of lizards.
    Solessio E; Engbretson GA
    Nature; 1993 Jul; 364(6436):442-5. PubMed ID: 8332214
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mouse cone photoresponses obtained with electroretinogram from the isolated retina.
    Heikkinen H; Nymark S; Koskelainen A
    Vision Res; 2008 Jan; 48(2):264-72. PubMed ID: 18166210
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparison of release kinetics and glutamate receptor properties in shaping rod-cone differences in EPSC kinetics in the salamander retina.
    Cadetti L; Tranchina D; Thoreson WB
    J Physiol; 2005 Dec; 569(Pt 3):773-88. PubMed ID: 16223761
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The status of cones in the rhodopsin mutant P23H-3 retina: light-regulated damage and repair in parallel with rods.
    Chrysostomou V; Stone J; Stowe S; Barnett NL; Valter K
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1116-25. PubMed ID: 18326739
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Light responses in the mouse retina are prolonged upon targeted deletion of the HCN1 channel gene.
    Knop GC; Seeliger MW; Thiel F; Mataruga A; Kaupp UB; Friedburg C; Tanimoto N; Müller F
    Eur J Neurosci; 2008 Dec; 28(11):2221-30. PubMed ID: 19019198
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Independent influences of rod adaptation on cone-mediated responses to light onset and offset in distal retinal neurons.
    Frumkes TE; Wu SM
    J Neurophysiol; 1990 Sep; 64(3):1043-54. PubMed ID: 2230916
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The optimal synapse for sparse, binary signals in the rod pathway.
    Clark PT; van Rossum MC
    Neural Comput; 2006 Jan; 18(1):26-44. PubMed ID: 16354379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.