These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 1809347)

  • 61. A paradigm for endosymbiotic life: cell differentiation of Rhizobium bacteria provoked by host plant factors.
    Kondorosi E; Mergaert P; Kereszt A
    Annu Rev Microbiol; 2013; 67():611-28. PubMed ID: 24024639
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Clover development during spaceflight: a model system.
    Guikema JA; DeBell L; Paulsen A; Spooner BS; Wong PP
    Adv Space Res; 1994; 14(8):173-6. PubMed ID: 11537915
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Bacteroid formation in the Rhizobium-legume symbiosis.
    Oke V; Long SR
    Curr Opin Microbiol; 1999 Dec; 2(6):641-6. PubMed ID: 10607628
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Genetic hydridization of root-nodule bacteria (Rhizobium).
    Johnston AW; Beringer JE
    Basic Life Sci; 1977; 9():81-90. PubMed ID: 921702
    [No Abstract]   [Full Text] [Related]  

  • 65. Evolutionarily conserved CLE peptide signaling in plant development, symbiosis, and parasitism.
    Miyawaki K; Tabata R; Sawa S
    Curr Opin Plant Biol; 2013 Oct; 16(5):598-606. PubMed ID: 24035739
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Exopolysaccharides of Rhizobium: synthesis, regulation and symbiotic function.
    Leigh JA; Walker GC
    Trends Genet; 1994 Feb; 10(2):63-7. PubMed ID: 8191588
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The relationship between nodulin gene expression and the Rhizobium nod genes in Vicia sativa root nodule development.
    Nap JP; van de Wiel C; Spaink HP; Moerman M; van den Heuvel M; Djordjevic MA; van Lammeren AA; van Kammen A; Bisseling T
    Mol Plant Microbe Interact; 1989; 2(2):53-63. PubMed ID: 2520161
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Legume models strut their stuff.
    Udvardi MK
    Mol Plant Microbe Interact; 2001 Jan; 14(1):6-9. PubMed ID: 11194872
    [No Abstract]   [Full Text] [Related]  

  • 69. Multidisciplinary approaches for studying rhizobium-legume symbioses.
    diCenzo GC; Zamani M; Checcucci A; Fondi M; Griffitts JS; Finan TM; Mengoni A
    Can J Microbiol; 2019 Jan; 65(1):1-33. PubMed ID: 30205015
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Molecular aspects of the energetics of nitrogen fixation in Rhizobium-legume symbioses.
    O'Brian MR; Maier RJ
    Biochim Biophys Acta; 1989 May; 974(3):229-46. PubMed ID: 2659085
    [No Abstract]   [Full Text] [Related]  

  • 71. Keys to symbiotic harmony.
    Broughton WJ; Jabbouri S; Perret X
    J Bacteriol; 2000 Oct; 182(20):5641-52. PubMed ID: 11004160
    [No Abstract]   [Full Text] [Related]  

  • 72. Flavonoids induce Rhizobium leguminosarum to produce nodDABC gene-related factors that cause thick, short roots and root hair responses on common vetch.
    Zaat SA; van Brussel AA; Tak T; Pees E; Lugtenberg BJ
    J Bacteriol; 1987 Jul; 169(7):3388-91. PubMed ID: 3597326
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Intergeneric transfer of genes involved in the Rhizobium-legume symbiosis.
    Bishop PE; Dazzo FB; Appelbaum ER; Maier RJ; Brill WJ
    Science; 1977 Dec; 198(4320):938-40. PubMed ID: 929179
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Nitrogen fixation control under drought stress. Localized or systemic?
    Marino D; Frendo P; Ladrera R; Zabalza A; Puppo A; Arrese-Igor C; González EM
    Plant Physiol; 2007 Apr; 143(4):1968-74. PubMed ID: 17416644
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Single cell-type transcriptome profiling reveals genes that promote nitrogen fixation in the infected and uninfected cells of legume nodules.
    Wang L; Zhou Y; Li R; Liang J; Tian T; Ji J; Chen R; Zhou Y; Fan Q; Ning G; Larkin RM; Becana M; Duanmu D
    Plant Biotechnol J; 2022 Apr; 20(4):616-618. PubMed ID: 35038375
    [No Abstract]   [Full Text] [Related]  

  • 76. Plant responses to nodulation factors.
    Downie JA; Walker SA
    Curr Opin Plant Biol; 1999 Dec; 2(6):483-9. PubMed ID: 10607652
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The legume-Rhizobium symbiosis: a cell surface interaction.
    Robertson JG; Wells B; Brewin NJ; Wood E; Knight CD; Downie JA
    J Cell Sci Suppl; 1985; 2():317-31. PubMed ID: 3912399
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Heme synthesis in the rhizobium-legume symbiosis: a palette for bacterial and eukaryotic pigments.
    O'Brian MR
    J Bacteriol; 1996 May; 178(9):2471-8. PubMed ID: 8626311
    [No Abstract]   [Full Text] [Related]  

  • 79. Rhizobium type III secretion systems: legume charmers or alarmers?
    Marie C; Broughton WJ; Deakin WJ
    Curr Opin Plant Biol; 2001 Aug; 4(4):336-42. PubMed ID: 11418344
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Lipopolysaccharide epitope expression of Rhizobium bacteroids as revealed by in situ immunolabelling of pea root nodule sections.
    Kannenberg EL; Perotto S; Bianciotto V; Rathbun EA; Brewin NJ
    J Bacteriol; 1994 Apr; 176(7):2021-32. PubMed ID: 7511581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.