These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 18093855)

  • 1. Continuity conditions and torsion angles from ssNMR orientational restraints.
    Achuthan S; Asbury T; Hu J; Bertram R; Cross TA; Quine JR
    J Magn Reson; 2008 Mar; 191(1):24-30. PubMed ID: 18093855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PIPATH: an optimized algorithm for generating alpha-helical structures from PISEMA data.
    Asbury T; Quine JR; Achuthan S; Hu J; Chapman MS; Cross TA; Bertram R
    J Magn Reson; 2006 Nov; 183(1):87-95. PubMed ID: 16914335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of protein backbone structures calculated from NMR angular restraints using Rosetta.
    Lapin J; Nevzorov AA
    J Biomol NMR; 2019 May; 73(5):229-244. PubMed ID: 31076969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orientation of a beta-hairpin antimicrobial peptide in lipid bilayers from two-dimensional dipolar chemical-shift correlation NMR.
    Tang M; Waring AJ; Lehrer RI; Hong M
    Biophys J; 2006 May; 90(10):3616-24. PubMed ID: 16500957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational response of the phosphatidylcholine headgroup to bilayer surface charge: torsion angle constraints from dipolar and quadrupolar couplings in bicelles.
    Semchyschyn DJ; Macdonald PM
    Magn Reson Chem; 2004 Feb; 42(2):89-104. PubMed ID: 14745788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate prediction of protein torsion angles using chemical shifts and sequence homology.
    Neal S; Berjanskii M; Zhang H; Wishart DS
    Magn Reson Chem; 2006 Jul; 44 Spec No():S158-67. PubMed ID: 16823900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluctuations of backbone torsion angles obtained from NMR-determined structures and their prediction.
    Zhang T; Faraggi E; Zhou Y
    Proteins; 2010 Dec; 78(16):3353-62. PubMed ID: 20818661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlating the 31P NMR chemical shielding tensor and the 2J(P,C) spin-spin coupling constants with torsion angles ζ and α in the backbone of nucleic acids.
    Benda L; Sochorová Vokáčová Z; Straka M; Sychrovský V
    J Phys Chem B; 2012 Mar; 116(12):3823-33. PubMed ID: 22380464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural fitting of PISEMA spectra of aligned proteins.
    Nevzorov AA; Opella SJ
    J Magn Reson; 2003 Jan; 160(1):33-9. PubMed ID: 12565046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmembrane helix uniformity examined by spectral mapping of torsion angles.
    Page RC; Kim S; Cross TA
    Structure; 2008 May; 16(5):787-97. PubMed ID: 18462683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Docking of protein-protein complexes on the basis of highly ambiguous intermolecular distance restraints derived from 1H/15N chemical shift mapping and backbone 15N-1H residual dipolar couplings using conjoined rigid body/torsion angle dynamics.
    Clore GM; Schwieters CD
    J Am Chem Soc; 2003 Mar; 125(10):2902-12. PubMed ID: 12617657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TALI: local alignment of protein structures using backbone torsion angles.
    Miao X; Waddell PJ; Valafar H
    J Bioinform Comput Biol; 2008 Feb; 6(1):163-81. PubMed ID: 18324751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of multiple torsion-angle constraints in U-(13)C,(15)N-labeled peptides: 3D (1)H-(15)N-(13)C-(1)H dipolar chemical shift NMR spectroscopy in rotating solids.
    Rienstra CM; Hohwy M; Mueller LJ; Jaroniec CP; Reif B; Griffin RG
    J Am Chem Soc; 2002 Oct; 124(40):11908-22. PubMed ID: 12358535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of a systematic search-based algorithm for determining protein backbone structure from a minimum number of residual dipolar couplings.
    Wang L; Donald BR
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():319-30. PubMed ID: 16448025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution polypeptide structure in a lamellar phase lipid environment from solid state NMR derived orientational constraints.
    Ketchem R; Roux B; Cross T
    Structure; 1997 Dec; 5(12):1655-69. PubMed ID: 9438865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TANGLE: two-level support vector regression approach for protein backbone torsion angle prediction from primary sequences.
    Song J; Tan H; Wang M; Webb GI; Akutsu T
    PLoS One; 2012; 7(2):e30361. PubMed ID: 22319565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The closed state of a H+ channel helical bundle combining precise orientational and distance restraints from solid state NMR.
    Nishimura K; Kim S; Zhang L; Cross TA
    Biochemistry; 2002 Nov; 41(44):13170-7. PubMed ID: 12403618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of whole-body dynamics on 15N PISEMA NMR spectra of membrane proteins: a theoretical analysis.
    Esteban-Martín S; Strandberg E; Fuertes G; Ulrich AS; Salgado J
    Biophys J; 2009 Apr; 96(8):3233-41. PubMed ID: 19383467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of peptide backbone torsion angles using double-quantum dipolar recoupling solid-state NMR spectroscopy.
    Mehta MA; Eddy MT; McNeill SA; Mills FD; Long JR
    J Am Chem Soc; 2008 Feb; 130(7):2202-12. PubMed ID: 18220389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A versatile component-coupling model to account for substituent effects: application to polypeptide phi and chi(1) torsion related (3)J data.
    Schmidt JM
    J Magn Reson; 2007 May; 186(1):34-50. PubMed ID: 17292645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.