These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 18093855)
21. NMR determination of the torsion angle psi in alpha-helical peptides and proteins: the HCCN dipolar correlation experiment. Ladizhansky V; Veshtort M; Griffin RG J Magn Reson; 2002 Feb; 154(2):317-24. PubMed ID: 11846590 [TBL] [Abstract][Full Text] [Related]
22. Structure of tightly membrane-bound mastoparan-X, a G-protein-activating peptide, determined by solid-state NMR. Todokoro Y; Yumen I; Fukushima K; Kang SW; Park JS; Kohno T; Wakamatsu K; Akutsu H; Fujiwara T Biophys J; 2006 Aug; 91(4):1368-79. PubMed ID: 16714348 [TBL] [Abstract][Full Text] [Related]
23. AssignFit: a program for simultaneous assignment and structure refinement from solid-state NMR spectra. Tian Y; Schwieters CD; Opella SJ; Marassi FM J Magn Reson; 2012 Jan; 214(1):42-50. PubMed ID: 22036904 [TBL] [Abstract][Full Text] [Related]
24. Conformational constraints on the headgroup and sn-2 chain of bilayer DMPC from NMR dipolar couplings. Hong M; Schmidt-Rohr K; Zimmermann H Biochemistry; 1996 Jun; 35(25):8335-41. PubMed ID: 8679591 [TBL] [Abstract][Full Text] [Related]
25. Experimental determination of torsion angles in the polypeptide backbone of the gramicidin A channel by solid state nuclear magnetic resonance. Teng Q; Nicholson LK; Cross TA J Mol Biol; 1991 Apr; 218(3):607-19. PubMed ID: 1707978 [TBL] [Abstract][Full Text] [Related]
26. 'Boomerang'-like insertion of a fusogenic peptide in a lipid membrane revealed by solid-state 19F NMR. Afonin S; Dürr UH; Glaser RW; Ulrich AS Magn Reson Chem; 2004 Feb; 42(2):195-203. PubMed ID: 14745800 [TBL] [Abstract][Full Text] [Related]
27. Improving the quality of NMR and crystallographic protein structures by means of a conformational database potential derived from structure databases. Kuszewski J; Gronenborn AM; Clore GM Protein Sci; 1996 Jun; 5(6):1067-80. PubMed ID: 8762138 [TBL] [Abstract][Full Text] [Related]
28. Amplitudes of protein backbone dynamics and correlated motions in a small alpha/beta protein: correspondence of dipolar coupling and heteronuclear relaxation measurements. Clore GM; Schwieters CD Biochemistry; 2004 Aug; 43(33):10678-91. PubMed ID: 15311929 [TBL] [Abstract][Full Text] [Related]
29. An efficient and accurate algorithm for assigning nuclear overhauser effect restraints using a rotamer library ensemble and residual dipolar couplings. Wang L; Donald BR Proc IEEE Comput Syst Bioinform Conf; 2005; ():189-202. PubMed ID: 16447976 [TBL] [Abstract][Full Text] [Related]
30. Torsion angle dynamics for NMR structure calculation with the new program DYANA. Güntert P; Mumenthaler C; Wüthrich K J Mol Biol; 1997 Oct; 273(1):283-98. PubMed ID: 9367762 [TBL] [Abstract][Full Text] [Related]
31. Exact solutions for internuclear vectors and backbone dihedral angles from NH residual dipolar couplings in two media, and their application in a systematic search algorithm for determining protein backbone structure. Wang L; Donald BR J Biomol NMR; 2004 Jul; 29(3):223-42. PubMed ID: 15213422 [TBL] [Abstract][Full Text] [Related]
32. How much backbone motion in ubiquitin is required to account for dipolar coupling data measured in multiple alignment media as assessed by independent cross-validation? Clore GM; Schwieters CD J Am Chem Soc; 2004 Mar; 126(9):2923-38. PubMed ID: 14995210 [TBL] [Abstract][Full Text] [Related]
33. Tryptophans in membrane proteins: indole ring orientations and functional implications in the gramicidin channel. Hu W; Lee KC; Cross TA Biochemistry; 1993 Jul; 32(27):7035-47. PubMed ID: 7687467 [TBL] [Abstract][Full Text] [Related]
34. Determination of nucleic acid backbone conformation by 1H NMR. Kim SG; Lin LJ; Reid BR Biochemistry; 1992 Apr; 31(14):3564-74. PubMed ID: 1373647 [TBL] [Abstract][Full Text] [Related]
35. Structural and orientational constraints of bacteriorhodopsin in purple membranes determined by oriented-sample solid-state NMR spectroscopy. Kamihira M; Vosegaard T; Mason AJ; Straus SK; Nielsen NC; Watts A J Struct Biol; 2005 Jan; 149(1):7-16. PubMed ID: 15629653 [TBL] [Abstract][Full Text] [Related]
36. REDCRAFT: a tool for simultaneous characterization of protein backbone structure and motion from RDC data. Bryson M; Tian F; Prestegard JH; Valafar H J Magn Reson; 2008 Apr; 191(2):322-34. PubMed ID: 18258464 [TBL] [Abstract][Full Text] [Related]
37. Evaluating tilt angles of membrane-associated helices: comparison of computational and NMR techniques. Ulmschneider MB; Sansom MS; Di Nola A Biophys J; 2006 Mar; 90(5):1650-60. PubMed ID: 16339877 [TBL] [Abstract][Full Text] [Related]
38. High-resolution solution structure of the inhibitor-free catalytic fragment of human fibroblast collagenase determined by multidimensional NMR. Moy FJ; Chanda PK; Cosmi S; Pisano MR; Urbano C; Wilhelm J; Powers R Biochemistry; 1998 Feb; 37(6):1495-504. PubMed ID: 9484219 [TBL] [Abstract][Full Text] [Related]
39. Using pisa pies to resolve ambiguities in angular constraints from PISEMA spectra of aligned proteins. Marassi FM; Opella SJ J Biomol NMR; 2002 Jul; 23(3):239-42. PubMed ID: 12238596 [TBL] [Abstract][Full Text] [Related]
40. Torsion angle analysis of glycolipid order at membrane surfaces. Hare BJ; Howard KP; Prestegard JH Biophys J; 1993 Feb; 64(2):392-8. PubMed ID: 8457665 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]