These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 18093855)
41. Structure determination of a peptide model of the repeated helical domain in Samia cynthia ricini silk fibroin before spinning by a combination of advanced solid-state NMR methods. Nakazawa Y; Asakura T J Am Chem Soc; 2003 Jun; 125(24):7230-7. PubMed ID: 12797796 [TBL] [Abstract][Full Text] [Related]
42. Lipid bilayers: an essential environment for the understanding of membrane proteins. Page RC; Li C; Hu J; Gao FP; Cross TA Magn Reson Chem; 2007 Dec; 45 Suppl 1():S2-11. PubMed ID: 18095258 [TBL] [Abstract][Full Text] [Related]
43. Structure of gramicidin a in a lipid bilayer environment determined using molecular dynamics simulations and solid-state NMR data. Allen TW; Andersen OS; Roux B J Am Chem Soc; 2003 Aug; 125(32):9868-77. PubMed ID: 12904055 [TBL] [Abstract][Full Text] [Related]
44. Solid-state NMR and quantum chemical investigations of 13Calpha shielding tensor magnitudes and orientations in peptides: determining phi and psi torsion angles. Wi S; Sun H; Oldfield E; Hong M J Am Chem Soc; 2005 May; 127(17):6451-8. PubMed ID: 15853353 [TBL] [Abstract][Full Text] [Related]
45. Backbone conformational constraints in a microcrystalline U-15N-labeled protein by 3D dipolar-shift solid-state NMR spectroscopy. Franks WT; Wylie BJ; Stellfox SA; Rienstra CM J Am Chem Soc; 2006 Mar; 128(10):3154-5. PubMed ID: 16522090 [TBL] [Abstract][Full Text] [Related]
46. Protein structural information derived from NMR chemical shift with the neural network program TALOS-N. Shen Y; Bax A Methods Mol Biol; 2015; 1260():17-32. PubMed ID: 25502373 [TBL] [Abstract][Full Text] [Related]
47. Simulation of oriented NMR spectra: Combining molecular dynamics and chemical shift tensor calculations. Sternberg U; Witter R Magn Reson Chem; 2024 Mar; 62(3):125-144. PubMed ID: 37884439 [TBL] [Abstract][Full Text] [Related]
48. The solution conformation of the antibacterial peptide cecropin A: a nuclear magnetic resonance and dynamical simulated annealing study. Holak TA; Engström A; Kraulis PJ; Lindeberg G; Bennich H; Jones TA; Gronenborn AM; Clore GM Biochemistry; 1988 Oct; 27(20):7620-9. PubMed ID: 3207693 [TBL] [Abstract][Full Text] [Related]
49. The J-coupling restrained molecular mechanics (JrMM) protocol--an efficient alternative for deriving DNA endocyclic torsion angle constraints. Part II: Experimental application of the JrMM protocol. Lam SL; Au-Yeung SC J Biomol Struct Dyn; 1996 Apr; 13(5):815-25. PubMed ID: 8723776 [TBL] [Abstract][Full Text] [Related]
50. Biomolecular structure refinement based on adaptive restraints using local-elevation simulation. Christen M; Keller B; van Gunsteren WF J Biomol NMR; 2007 Dec; 39(4):265-73. PubMed ID: 17929172 [TBL] [Abstract][Full Text] [Related]
51. High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Ketchem RR; Hu W; Cross TA Science; 1993 Sep; 261(5127):1457-60. PubMed ID: 7690158 [TBL] [Abstract][Full Text] [Related]
52. Structure and orientation of antibiotic peptide alamethicin in phospholipid bilayers as revealed by chemical shift oscillation analysis of solid state nuclear magnetic resonance and molecular dynamics simulation. Nagao T; Mishima D; Javkhlantugs N; Wang J; Ishioka D; Yokota K; Norisada K; Kawamura I; Ueda K; Naito A Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2789-98. PubMed ID: 26248014 [TBL] [Abstract][Full Text] [Related]
53. OPUS-Refine: A Fast Sampling-Based Framework for Refining Protein Backbone Torsion Angles and Global Conformation. Xu G; Wang Q; Ma J J Chem Theory Comput; 2020 Feb; 16(2):1359-1366. PubMed ID: 31935088 [TBL] [Abstract][Full Text] [Related]
54. Exploring the protein landscape in ramachandran space: it's not just psi-phi. Krivan W; Carter D J Bioinform Comput Biol; 2009 Dec; 7(6):1031-7. PubMed ID: 20014477 [TBL] [Abstract][Full Text] [Related]
55. PREDITOR: a web server for predicting protein torsion angle restraints. Berjanskii MV; Neal S; Wishart DS Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W63-9. PubMed ID: 16845087 [TBL] [Abstract][Full Text] [Related]
56. Strategy for supplementing structure calculations using limited data with hydrophobic distance restraints. Alexandrescu AT Proteins; 2004 Jul; 56(1):117-29. PubMed ID: 15162492 [TBL] [Abstract][Full Text] [Related]
57. Three-dimensional structure of the transmembrane domain of Vpu from HIV-1 in aligned phospholipid bicelles. Park SH; De Angelis AA; Nevzorov AA; Wu CH; Opella SJ Biophys J; 2006 Oct; 91(8):3032-42. PubMed ID: 16861273 [TBL] [Abstract][Full Text] [Related]
58. Measurement of multiple psi torsion angles in uniformly 13C,15N-labeled alpha-spectrin SH3 domain using 3D 15N-13C-13C-15N MAS dipolar-chemical shift correlation spectroscopy. Ladizhansky V; Jaroniec CP; Diehl A; Oschkinat H; Griffin RG J Am Chem Soc; 2003 Jun; 125(22):6827-33. PubMed ID: 12769594 [TBL] [Abstract][Full Text] [Related]
59. The dynamics and orientation of a lipophilic drug within model membranes determined by 13C solid-state NMR. Boland MP; Middleton DA Phys Chem Chem Phys; 2008 Jan; 10(1):178-85. PubMed ID: 18075697 [TBL] [Abstract][Full Text] [Related]