BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 18093936)

  • 1. Synthetic iron-oxo "diamond core" mimics structure of key intermediate in methane monooxygenase catalytic cycle.
    Brunold TC
    Proc Natl Acad Sci U S A; 2007 Dec; 104(52):20641-2. PubMed ID: 18093936
    [No Abstract]   [Full Text] [Related]  

  • 2. High-valent iron(IV)-oxo complexes of heme and non-heme ligands in oxygenation reactions.
    Nam W
    Acc Chem Res; 2007 Jul; 40(7):522-31. PubMed ID: 17469792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct evidence for an iron(IV)-oxo porphyrin pi-cation radical as an active oxidant in catalytic oxygenation reactions.
    Han AR; Jin Jeong Y; Kang Y; Lee JY; Sook Seo M; Nam W
    Chem Commun (Camb); 2008 Mar; (9):1076-8. PubMed ID: 18292895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mimicking biological electron transfer and oxygen activation involving iron and copper proteins: a bio(in)organic supramolecular approach.
    Feiters MC
    Met Ions Biol Syst; 2001; 38():461-655. PubMed ID: 11219019
    [No Abstract]   [Full Text] [Related]  

  • 5. An Fe2IVO2 diamond core structure for the key intermediate Q of methane monooxygenase.
    Shu L; Nesheim JC; Kauffmann K; Münck E; Lipscomb JD; Que L
    Science; 1997 Jan; 275(5299):515-8. PubMed ID: 8999792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-valent iron in chemical and biological oxidations.
    Groves JT
    J Inorg Biochem; 2006 Apr; 100(4):434-47. PubMed ID: 16516297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Nonheme Manganese- and Iron-Containing Flavone Synthase Mimics.
    Lakk-Bogáth D; Juraj NP; Meena BI; Perić B; Kirin SI; Kaizer J
    Molecules; 2021 May; 26(11):. PubMed ID: 34072092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A synthetic precedent for the [FeIV2(mu-O)2] diamond core proposed for methane monooxygenase intermediate Q.
    Xue G; Wang D; De Hont R; Fiedler AT; Shan X; Münck E; Que L
    Proc Natl Acad Sci U S A; 2007 Dec; 104(52):20713-8. PubMed ID: 18093922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic analogue of the [Fe(2)(mu-OH)(2)(mu-O(2)CR)](3+) core of soluble methane monooxygenase hydroxylase via synthesis and dioxygen reactivity of carboxylate-bridged diiron(II) complexes.
    Lee D; Lippard SJ
    Inorg Chem; 2002 Feb; 41(4):827-37. PubMed ID: 11849083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational studies of reaction mechanisms of methane monooxygenase and ribonucleotide reductase.
    Torrent M; Musaev DG; Basch H; Morokuma K
    J Comput Chem; 2002 Jan; 23(1):59-76. PubMed ID: 11913390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane.
    Rosenzweig AC; Frederick CA; Lippard SJ; Nordlund P
    Nature; 1993 Dec; 366(6455):537-43. PubMed ID: 8255292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum chemical studies of methane monooxygenase: comparision with P450.
    Guallar V; Gherman BF; Lippard SJ; Friesner RA
    Curr Opin Chem Biol; 2002 Apr; 6(2):236-42. PubMed ID: 12039010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The status of high-valent metal oxo complexes in the P450 cytochromes.
    Makris TM; von Koenig K; Schlichting I; Sligar SG
    J Inorg Biochem; 2006 Apr; 100(4):507-18. PubMed ID: 16510191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic insight into formation of oxo-iron(IV) porphyrin pi-cation radicals from enzyme mimics of cytochrome P450 in organic solvents.
    Hessenauer-Ilicheva N; Franke A; Meyer D; Woggon WD; van Eldik R
    Chemistry; 2009; 15(12):2941-59. PubMed ID: 19185039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic characterization of compound I formation in the thermostable cytochrome P450 CYP119.
    Kellner DG; Hung SC; Weiss KE; Sligar SG
    J Biol Chem; 2002 Mar; 277(12):9641-4. PubMed ID: 11799104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The axial ligand effect of oxo-iron porphyrin catalysts. How does chloride compare to thiolate?
    de Visser SP
    J Biol Inorg Chem; 2006 Mar; 11(2):168-78. PubMed ID: 16331402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metalloporphyrines as active site analogues--lessons from enzymes and enzyme models.
    Woggon WD
    Acc Chem Res; 2005 Feb; 38(2):127-36. PubMed ID: 15709732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the oxygenated intermediate of the thermophilic cytochrome P450 CYP119.
    Denisov IG; Hung SC; Weiss KE; McLean MA; Shiro Y; Park SY; Champion PM; Sligar SG
    J Inorg Biochem; 2001 Dec; 87(4):215-26. PubMed ID: 11744059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the axial ligand on substrate sulfoxidation mediated by iron(IV)-oxo porphyrin cation radical oxidants.
    Kumar D; Sastry GN; de Visser SP
    Chemistry; 2011 May; 17(22):6196-205. PubMed ID: 21469227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thoughts on thiolate tethering. Tribute and thanks to a teacher.
    Ullrich V
    Arch Biochem Biophys; 2003 Jan; 409(1):45-51. PubMed ID: 12464243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.