BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 18093980)

  • 21. Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: a model for viral DNA binding.
    Chen JC; Krucinski J; Miercke LJ; Finer-Moore JS; Tang AH; Leavitt AD; Stroud RM
    Proc Natl Acad Sci U S A; 2000 Jul; 97(15):8233-8. PubMed ID: 10890912
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stimulation of the HIV-1 integrase enzymatic activity and cDNA integration by a peptide derived from the integrase protein.
    Levin A; Hayouka Z; Helfer M; Brack-Werner R; Friedler A; Loyter A
    Biopolymers; 2010 Aug; 93(8):740-51. PubMed ID: 20517955
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resistance to HIV-1 integrase inhibitors: A structural perspective.
    Mouscadet JF; Delelis O; Marcelin AG; Tchertanov L
    Drug Resist Updat; 2010; 13(4-5):139-50. PubMed ID: 20570551
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The core domain of HIV-1 integrase recognizes key features of its DNA substrates.
    Gerton JL; Brown PO
    J Biol Chem; 1997 Oct; 272(41):25809-15. PubMed ID: 9325310
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sequence specificity of viral end DNA binding by HIV-1 integrase reveals critical regions for protein-DNA interaction.
    Esposito D; Craigie R
    EMBO J; 1998 Oct; 17(19):5832-43. PubMed ID: 9755183
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic modulation of HIV-1 integrase structure and function by cellular lens epithelium-derived growth factor (LEDGF) protein.
    McKee CJ; Kessl JJ; Shkriabai N; Dar MJ; Engelman A; Kvaratskhelia M
    J Biol Chem; 2008 Nov; 283(46):31802-12. PubMed ID: 18801737
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biochemical analysis of HIV-1 integrase variants resistant to strand transfer inhibitors.
    Dicker IB; Terry B; Lin Z; Li Z; Bollini S; Samanta HK; Gali V; Walker MA; Krystal MR
    J Biol Chem; 2008 Aug; 283(35):23599-609. PubMed ID: 18577511
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes to the HIV long terminal repeat and to HIV integrase differentially impact HIV integrase assembly, activity, and the binding of strand transfer inhibitors.
    Dicker IB; Samanta HK; Li Z; Hong Y; Tian Y; Banville J; Remillard RR; Walker MA; Langley DR; Krystal M
    J Biol Chem; 2007 Oct; 282(43):31186-96. PubMed ID: 17715137
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integration requires a specific interaction of the donor DNA terminal 5'-cytosine with glutamine 148 of the HIV-1 integrase flexible loop.
    Johnson AA; Santos W; Pais GC; Marchand C; Amin R; Burke TR; Verdine G; Pommier Y
    J Biol Chem; 2006 Jan; 281(1):461-7. PubMed ID: 16257967
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Zinc folds the N-terminal domain of HIV-1 integrase, promotes multimerization, and enhances catalytic activity.
    Zheng R; Jenkins TM; Craigie R
    Proc Natl Acad Sci U S A; 1996 Nov; 93(24):13659-64. PubMed ID: 8942990
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mapping viral DNA specificity to the central region of integrase by using functional human immunodeficiency virus type 1/visna virus chimeric proteins.
    Katzman M; Sudol M
    J Virol; 1998 Mar; 72(3):1744-53. PubMed ID: 9499023
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Displacement of viral DNA termini from stable HIV-1 integrase nucleoprotein complexes induced by secondary DNA-binding interactions.
    Pemberton IK; Buc H; Buckle M
    Biochemistry; 1998 Feb; 37(8):2682-90. PubMed ID: 9485419
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mapping DNA-binding sites of HIV-1 integrase by protein footprinting.
    Dirac AM; Kjems J
    Eur J Biochem; 2001 Feb; 268(3):743-51. PubMed ID: 11168414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Architecture and assembly of HIV integrase multimers in the absence of DNA substrates.
    Bojja RS; Andrake MD; Merkel G; Weigand S; Dunbrack RL; Skalka AM
    J Biol Chem; 2013 Mar; 288(10):7373-86. PubMed ID: 23322775
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiple integrase functions are required to form the native structure of the human immunodeficiency virus type I intasome.
    Chen H; Wei SQ; Engelman A
    J Biol Chem; 1999 Jun; 274(24):17358-64. PubMed ID: 10358097
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of the amino-terminal sequence on the structure and function of HIV integrase.
    Eilers G; Gupta K; Allen A; Zhou J; Hwang Y; Cory MB; Bushman FD; Van Duyne G
    Retrovirology; 2020 Aug; 17(1):28. PubMed ID: 32867805
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure and function of HIV-1 integrase.
    Chiu TK; Davies DR
    Curr Top Med Chem; 2004; 4(9):965-77. PubMed ID: 15134551
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Critical contacts between HIV-1 integrase and viral DNA identified by structure-based analysis and photo-crosslinking.
    Jenkins TM; Esposito D; Engelman A; Craigie R
    EMBO J; 1997 Nov; 16(22):6849-59. PubMed ID: 9362498
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ubiquitination of non-lysine residues in the retroviral integrase.
    Wang Z; Hou X; Wang Y; Xu A; Cao W; Liao M; Zhang R; Tang J
    Biochem Biophys Res Commun; 2017 Dec; 494(1-2):57-62. PubMed ID: 29054407
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of DNA modifications on DNA processing by HIV-1 integrase and inhibitor binding: role of DNA backbone flexibility and an open catalytic site.
    Johnson AA; Sayer JM; Yagi H; Patil SS; Debart F; Maier MA; Corey DR; Vasseur JJ; Burke TR; Marquez VE; Jerina DM; Pommier Y
    J Biol Chem; 2006 Oct; 281(43):32428-38. PubMed ID: 16943199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.