BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 18093993)

  • 1. An adaptive mutation in adenylate kinase that increases organismal fitness is linked to stability-activity trade-offs.
    Couñago R; Wilson CJ; Peña MI; Wittung-Stafshede P; Shamoo Y
    Protein Eng Des Sel; 2008 Jan; 21(1):19-27. PubMed ID: 18093993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo molecular evolution reveals biophysical origins of organismal fitness.
    Couñago R; Chen S; Shamoo Y
    Mol Cell; 2006 May; 22(4):441-9. PubMed ID: 16713575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed evolution study of temperature adaptation in a psychrophilic enzyme.
    Miyazaki K; Wintrode PL; Grayling RA; Rubingh DN; Arnold FH
    J Mol Biol; 2000 Apr; 297(4):1015-26. PubMed ID: 10736234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noncooperative folding of subdomains in adenylate kinase.
    Rundqvist L; Adén J; Sparrman T; Wallgren M; Olsson U; Wolf-Watz M
    Biochemistry; 2009 Mar; 48(9):1911-27. PubMed ID: 19219996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of a trimeric archaeal adenylate kinase from the mesophile Methanococcus maripaludis with an unusually broad functional range and thermal stability.
    Davlieva M; Shamoo Y
    Proteins; 2010 Feb; 78(2):357-64. PubMed ID: 19731371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental evolution of adenylate kinase reveals contrasting strategies toward protein thermostability.
    Miller C; Davlieva M; Wilson C; White KI; Couñago R; Wu G; Myers JC; Wittung-Stafshede P; Shamoo Y
    Biophys J; 2010 Aug; 99(3):887-96. PubMed ID: 20682267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability for function trade-offs in the enolase superfamily "catalytic module".
    Nagatani RA; Gonzalez A; Shoichet BK; Brinen LS; Babbitt PC
    Biochemistry; 2007 Jun; 46(23):6688-95. PubMed ID: 17503785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of low-temperature caseinolytic activity of a thermophilic subtilase by directed evolution and site-directed mutagenesis.
    Zhong CQ; Song S; Fang N; Liang X; Zhu H; Tang XF; Tang B
    Biotechnol Bioeng; 2009 Dec; 104(5):862-70. PubMed ID: 19609954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hyperthermophilic protein acquires function at the cost of stability.
    Mukaiyama A; Haruki M; Ota M; Koga Y; Takano K; Kanaya S
    Biochemistry; 2006 Oct; 45(42):12673-9. PubMed ID: 17042484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrostatic stabilization of a thermophilic cold shock protein.
    Perl D; Schmid FX
    J Mol Biol; 2001 Oct; 313(2):343-57. PubMed ID: 11800561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of static and dynamic domains in stability and catalysis of adenylate kinase.
    Bae E; Phillips GN
    Proc Natl Acad Sci U S A; 2006 Feb; 103(7):2132-7. PubMed ID: 16452168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stabilization of the cold shock protein CspB from Bacillus subtilis by evolutionary optimization of Coulombic interactions.
    Wunderlich M; Martin A; Schmid FX
    J Mol Biol; 2005 Apr; 347(5):1063-76. PubMed ID: 15784264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new subfamily of short bacterial adenylate kinases with the Mycobacterium tuberculosis enzyme as a model: A predictive and experimental study.
    Munier-Lehmann H; Burlacu-Miron S; Craescu CT; Mantsch HH; Schultz CP
    Proteins; 1999 Aug; 36(2):238-48. PubMed ID: 10398370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-vitro selection of highly stabilized protein variants with optimized surface.
    Martin A; Sieber V; Schmid FX
    J Mol Biol; 2001 Jun; 309(3):717-26. PubMed ID: 11397091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary fates within a microbial population highlight an essential role for protein folding during natural selection.
    Peña MI; Davlieva M; Bennett MR; Olson JS; Shamoo Y
    Mol Syst Biol; 2010 Jul; 6():387. PubMed ID: 20631681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization of E. coli Ribonuclease HI by the 'stability profile of mutant protein' (SPMP)-inspired random and non-random mutagenesis.
    Haruki M; Saito Y; Ota M; Nishikawa K; Kanaya S
    J Biotechnol; 2006 Jul; 124(3):512-22. PubMed ID: 16545882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat capacity-independent determination of differential free energy of stability between structurally homologous proteins.
    Lemaster DM
    Biophys Chem; 2006 Jan; 119(1):94-100. PubMed ID: 16125837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of ionic strength on protein stability: the cold shock protein family.
    Dominy BN; Perl D; Schmid FX; Brooks CL
    J Mol Biol; 2002 May; 319(2):541-54. PubMed ID: 12051927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability.
    Reetz MT; Carballeira JD; Vogel A
    Angew Chem Int Ed Engl; 2006 Nov; 45(46):7745-51. PubMed ID: 17075931
    [No Abstract]   [Full Text] [Related]  

  • 20. Evolution of stability in a cold-active enzyme elicits specificity relaxation and highlights substrate-related effects on temperature adaptation.
    Gatti-Lafranconi P; Natalello A; Rehm S; Doglia SM; Pleiss J; Lotti M
    J Mol Biol; 2010 Jan; 395(1):155-66. PubMed ID: 19850050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.