These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 18094102)
1. A feedback model reproduces muscle activity during human postural responses to support-surface translations. Welch TD; Ting LH J Neurophysiol; 2008 Feb; 99(2):1032-8. PubMed ID: 18094102 [TBL] [Abstract][Full Text] [Related]
2. A feedback model explains the differential scaling of human postural responses to perturbation acceleration and velocity. Welch TD; Ting LH J Neurophysiol; 2009 Jun; 101(6):3294-309. PubMed ID: 19357335 [TBL] [Abstract][Full Text] [Related]
4. Cerebellar control of postural scaling and central set in stance. Horak FB; Diener HC J Neurophysiol; 1994 Aug; 72(2):479-93. PubMed ID: 7983513 [TBL] [Abstract][Full Text] [Related]
5. Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss. Bloem BR; Allum JH; Carpenter MG; Verschuuren JJ; Honegger F Exp Brain Res; 2002 Jan; 142(1):91-107. PubMed ID: 11797087 [TBL] [Abstract][Full Text] [Related]
6. Postural feedback scaling deficits in Parkinson's disease. Kim S; Horak FB; Carlson-Kuhta P; Park S J Neurophysiol; 2009 Nov; 102(5):2910-20. PubMed ID: 19741108 [TBL] [Abstract][Full Text] [Related]
7. Ankle and hip postural strategies defined by joint torques. Runge CF; Shupert CL; Horak FB; Zajac FE Gait Posture; 1999 Oct; 10(2):161-70. PubMed ID: 10502650 [TBL] [Abstract][Full Text] [Related]
8. Effects of dopamine on postural control in parkinsonian subjects: scaling, set, and tone. Horak FB; Frank J; Nutt J J Neurophysiol; 1996 Jun; 75(6):2380-96. PubMed ID: 8793751 [TBL] [Abstract][Full Text] [Related]
9. Increased muscle responses to balance perturbations in children with cerebral palsy can be explained by increased sensitivity to center of mass movement. Willaert J; Martino G; Desloovere K; Van Campenhout A; Ting LH; De Groote F Gait Posture; 2024 Jan; 107():121-129. PubMed ID: 36990910 [TBL] [Abstract][Full Text] [Related]
10. Spatio-temporal separation of roll and pitch balance-correcting commands in humans. Grüneberg C; Duysens J; Honegger F; Allum JH J Neurophysiol; 2005 Nov; 94(5):3143-58. PubMed ID: 16033938 [TBL] [Abstract][Full Text] [Related]
11. A model of cerebellum stabilized and scheduled hybrid long-loop control of upright balance. Jo S; Massaquoi SG Biol Cybern; 2004 Sep; 91(3):188-202. PubMed ID: 15372241 [TBL] [Abstract][Full Text] [Related]
13. Postural responses to multidirectional stance perturbations in cerebellar ataxia. Bakker M; Allum JH; Visser JE; Grüneberg C; van de Warrenburg BP; Kremer BH; Bloem BR Exp Neurol; 2006 Nov; 202(1):21-35. PubMed ID: 16808916 [TBL] [Abstract][Full Text] [Related]
14. Non-asymptotical postural stabilization strategy during human quiet stance. Yasutake Y; Taniguchi S; Nomura T Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1189-92. PubMed ID: 17946447 [TBL] [Abstract][Full Text] [Related]
15. The effect of short-term changes in body mass distribution on feed-forward postural control. Li X; Aruin AS J Electromyogr Kinesiol; 2009 Oct; 19(5):931-41. PubMed ID: 18614379 [TBL] [Abstract][Full Text] [Related]
16. Importance of body sway velocity information in controlling ankle extensor activities during quiet stance. Masani K; Popovic MR; Nakazawa K; Kouzaki M; Nozaki D J Neurophysiol; 2003 Dec; 90(6):3774-82. PubMed ID: 12944529 [TBL] [Abstract][Full Text] [Related]
18. Postural feedback responses scale with biomechanical constraints in human standing. Park S; Horak FB; Kuo AD Exp Brain Res; 2004 Feb; 154(4):417-27. PubMed ID: 14618285 [TBL] [Abstract][Full Text] [Related]
19. Postural adjustments due to external perturbations during sitting in 1-month-old infants: evidence for the innate origin of direction specificity. Hedberg A; Forssberg H; Hadders-Algra M Exp Brain Res; 2004 Jul; 157(1):10-7. PubMed ID: 15024537 [TBL] [Abstract][Full Text] [Related]