BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 18094774)

  • 1. Controlled on-chip stimulation of quantal catecholamine release from chromaffin cells using photolysis of caged Ca2+ on transparent indium-tin-oxide microchip electrodes.
    Chen X; Gao Y; Hossain M; Gangopadhyay S; Gillis KD
    Lab Chip; 2008 Jan; 8(1):161-9. PubMed ID: 18094774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetron sputtered diamond-like carbon microelectrodes for on-chip measurement of quantal catecholamine release from cells.
    Gao Y; Chen X; Gupta S; Gillis KD; Gangopadhyay S
    Biomed Microdevices; 2008 Oct; 10(5):623-9. PubMed ID: 18493856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-chip amperometric measurement of quantal catecholamine release using transparent indium tin oxide electrodes.
    Sun X; Gillis KD
    Anal Chem; 2006 Apr; 78(8):2521-5. PubMed ID: 16615759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwell device for targeting single cells to electrochemical microelectrodes for high-throughput amperometric detection of quantal exocytosis.
    Liu X; Barizuddin S; Shin W; Mathai CJ; Gangopadhyay S; Gillis KD
    Anal Chem; 2011 Apr; 83(7):2445-51. PubMed ID: 21355543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfluidic cell trap device for automated measurement of quantal catecholamine release from cells.
    Gao Y; Bhattacharya S; Chen X; Barizuddin S; Gangopadhyay S; Gillis KD
    Lab Chip; 2009 Dec; 9(23):3442-6. PubMed ID: 19904414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantal secretion of catecholamines measured from individual bovine adrenal medullary cells permeabilized with digitonin.
    Jankowski JA; Schroeder TJ; Holz RW; Wightman RM
    J Biol Chem; 1992 Sep; 267(26):18329-35. PubMed ID: 1526972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transparent Electrode Materials for Simultaneous Amperometric Detection of Exocytosis and Fluorescence Microscopy.
    Kisler K; Kim BN; Liu X; Berberian K; Fang Q; Mathai CJ; Gangopadhyay S; Gillis KD; Lindau M
    J Biomater Nanobiotechnol; 2012; 3(2A):243-253. PubMed ID: 22708072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amperometric detection of quantal catecholamine secretion from individual cells on micromachined silicon chips.
    Chen P; Xu B; Tokranova N; Feng X; Castracane J; Gillis KD
    Anal Chem; 2003 Feb; 75(3):518-24. PubMed ID: 12585478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of two-layer poly(dimethyl siloxane) devices for hydrodynamic cell trapping and exocytosis measurement with integrated indium tin oxide microelectrodes arrays.
    Gao C; Sun X; Gillis KD
    Biomed Microdevices; 2013 Jun; 15(3):445-51. PubMed ID: 23329291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blockade by nanomolar resveratrol of quantal catecholamine release in chromaffin cells.
    Fernández-Morales JC; Yáñez M; Orallo F; Cortés L; González JC; Hernández-Guijo JM; García AG; de Diego AM
    Mol Pharmacol; 2010 Oct; 78(4):734-44. PubMed ID: 20631052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contact photolithography-free integration of patterned and semi-transparent indium tin oxide stimulation electrodes into polydimethylsiloxane-based heart-on-a-chip devices for streamlining physiological recordings.
    Yip JK; Sarkar D; Petersen AP; Gipson JN; Tao J; Kale S; Rexius-Hall ML; Cho N; Khalil NN; Kapadia R; McCain ML
    Lab Chip; 2021 Feb; 21(4):674-687. PubMed ID: 33439202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical measurement of quantal exocytosis using microchips.
    Gillis KD; Liu XA; Marcantoni A; Carabelli V
    Pflugers Arch; 2018 Jan; 470(1):97-112. PubMed ID: 28866728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Ca(2+)-induced Ca(2+) release from intracellular stores contributes to catecholamine hypersecretion in adrenal chromaffin cells from spontaneously hypertensive rats.
    Segura-Chama P; López-Bistrain P; Pérez-Armendáriz EM; Jiménez-Pérez N; Millán-Aldaco D; Hernández-Cruz A
    Pflugers Arch; 2015 Nov; 467(11):2307-23. PubMed ID: 25791627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca(2+) -independent vesicular catecholamine release in PC12 cells by nanomolar concentrations of Pb(2+).
    Westerink RH; Vijverberg HP
    J Neurochem; 2002 Mar; 80(5):861-73. PubMed ID: 11948250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct patterns of exocytosis elicited by Ca
    Baraibar AM; de Pascual R; Camacho M; Domínguez N; David Machado J; Gandía L; Borges R
    Pflugers Arch; 2018 Oct; 470(10):1459-1471. PubMed ID: 29926228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of the secretory response in bovine chromaffin cells following flash photolysis of caged Ca2+.
    Heinemann C; Chow RH; Neher E; Zucker RS
    Biophys J; 1994 Dec; 67(6):2546-57. PubMed ID: 7696493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arachidonic acid release and catecholamine secretion from digitonin-treated chromaffin cells: effects of micromolar calcium, phorbol ester, and protein alkylating agents.
    Frye RA; Holz RW
    J Neurochem; 1985 Jan; 44(1):265-73. PubMed ID: 3917291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling of electrochemistry and fluorescence microscopy at indium tin oxide microelectrodes for the analysis of single exocytotic events.
    Amatore C; Arbault S; Chen Y; Crozatier C; Lemaître F; Verchier Y
    Angew Chem Int Ed Engl; 2006 Jun; 45(24):4000-3. PubMed ID: 16683291
    [No Abstract]   [Full Text] [Related]  

  • 19. Extracellular Ca²⁺ per se inhibits quantal size of catecholamine release in adrenal slice chromaffin cells.
    Shang S; Wang C; Liu B; Wu Q; Zhang Q; Liu W; Zheng L; Xu H; Kang X; Zhang X; Wang Y; Zheng H; Wang S; Xiong W; Liu T; Zhou Z
    Cell Calcium; 2014 Sep; 56(3):202-7. PubMed ID: 25103334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The quantal catecholamine release from mouse chromaffin cells challenged with repeated ACh pulses is regulated by the mitochondrial Na
    López-Gil A; Nanclares C; Méndez-López I; Martínez-Ramírez C; de Los Rios C; Padín-Nogueira JF; Montero M; Gandía L; García AG
    J Physiol; 2017 Mar; 595(6):2129-2146. PubMed ID: 27982456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.