These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 18094975)

  • 1. Interaction between descending input and thoracic reflexes for joint coordination in cockroach. II comparative studies on tethered turning and searching.
    Mu L; Ritzmann RE
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Mar; 194(3):299-312. PubMed ID: 18094975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction between descending input and thoracic reflexes for joint coordination in cockroach: I. descending influence on thoracic sensory reflexes.
    Mu L; Ritzmann RE
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Mar; 194(3):283-98. PubMed ID: 18094976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematics and motor activity during tethered walking and turning in the cockroach, Blaberus discoidalis.
    Mu L; Ritzmann RE
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Nov; 191(11):1037-54. PubMed ID: 16258746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-joint coordination during walking and foothold searching in the Blaberus cockroach. I. Kinematics and electromyograms.
    Tryba AK; Ritzmann RE
    J Neurophysiol; 2000 Jun; 83(6):3323-36. PubMed ID: 10848552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A neuromechanical simulation of insect walking and transition to turning of the cockroach Blaberus discoidalis.
    Szczecinski NS; Brown AE; Bender JA; Quinn RD; Ritzmann RE
    Biol Cybern; 2014 Feb; 108(1):1-21. PubMed ID: 24178847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Descending control of turning behavior in the cockroach, Blaberus discoidalis.
    Ridgel AL; Alexander BE; Ritzmann RE
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Apr; 193(4):385-402. PubMed ID: 17123086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of neck and circumoesophageal connective lesions on posture and locomotion in the cockroach.
    Ridgel AL; Ritzmann RE
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jun; 191(6):559-73. PubMed ID: 15864596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel motor pathways from thoracic interneurons of the ventral giant interneuron system of the cockroach, Periplaneta americana.
    Ritzmann RE; Pollack AJ
    J Neurobiol; 1990 Dec; 21(8):1219-35. PubMed ID: 2273401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of aging on behavior and leg kinematics during locomotion in two species of cockroach.
    Ridgel AL; Ritzmann RE; Schaefer PL
    J Exp Biol; 2003 Dec; 206(Pt 24):4453-65. PubMed ID: 14610030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor activity during searching and walking movements of cockroach legs.
    Delcomyn F
    J Exp Biol; 1987 Nov; 133():111-20. PubMed ID: 3430111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-joint coordination during walking and foothold searching in the Blaberus cockroach. II. Extensor motor neuron pattern.
    Tryba AK; Ritzmann RE
    J Neurophysiol; 2000 Jun; 83(6):3337-50. PubMed ID: 10848553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organization of a complex movement: fixed and variable components of the cockroach escape behavior.
    Camhi JM; Levy A
    J Comp Physiol A; 1988 Jul; 163(3):317-28. PubMed ID: 3184004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A neuromuscular model of human locomotion combines spinal reflex circuits with voluntary movements.
    Ramadan R; Geyer H; Jeka J; Schöner G; Reimann H
    Sci Rep; 2022 May; 12(1):8189. PubMed ID: 35581211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of reflex reversal in stick insect walking: effects of intersegmental signals, changes in direction, and optomotor-induced turning.
    Hellekes K; Blincow E; Hoffmann J; Büschges A
    J Neurophysiol; 2012 Jan; 107(1):239-49. PubMed ID: 21994271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Central-complex control of movement in the freely walking cockroach.
    Martin JP; Guo P; Mu L; Harley CM; Ritzmann RE
    Curr Biol; 2015 Nov; 25(21):2795-2803. PubMed ID: 26592340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perturbation of leg protraction causes context-dependent modulation of inter-leg coordination, but not of avoidance reflexes.
    Ebeling W; Dürr V
    J Exp Biol; 2006 Jun; 209(Pt 11):2199-214. PubMed ID: 16709921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Walking on a 'peg leg': extensor muscle activities and sensory feedback after distal leg denervation in cockroaches.
    Noah JA; Quimby L; Frazier SF; Zill SN
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Mar; 190(3):217-31. PubMed ID: 14727135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensory signals of unloading in one leg follow stance onset in another leg: transfer of load and emergent coordination in cockroach walking.
    Zill SN; Keller BR; Duke ER
    J Neurophysiol; 2009 May; 101(5):2297-304. PubMed ID: 19261716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Descending influences on escape behavior and motor pattern in the cockroach.
    Schaefer PL; Ritzmann RE
    J Neurobiol; 2001 Oct; 49(1):9-28. PubMed ID: 11536194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leg kinematics and muscle activity during treadmill running in the cockroach, Blaberus discoidalis: I. Slow running.
    Watson JT; Ritzmann RE
    J Comp Physiol A; 1998 Jan; 182(1):11-22. PubMed ID: 9447710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.