These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 18095277)

  • 21. Functional MRI of working memory and selective attention in vibrotactile frequency discrimination.
    Sörös P; Marmurek J; Tam F; Baker N; Staines WR; Graham SJ
    BMC Neurosci; 2007 Jul; 8():48. PubMed ID: 17610721
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A supramodal limbic-paralimbic-neocortical network supports goal-directed stimulus processing.
    Laurens KR; Kiehl KA; Liddle PF
    Hum Brain Mapp; 2005 Jan; 24(1):35-49. PubMed ID: 15593271
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The attentional-relevance and temporal dynamics of visual-tactile crossmodal interactions differentially influence early stages of somatosensory processing.
    Popovich C; Staines WR
    Brain Behav; 2014 Mar; 4(2):247-60. PubMed ID: 24683517
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gating at early cortical processing stages is associated with changes in behavioural performance on a sensory conflict task.
    Adams MS; Popovich C; Staines WR
    Behav Brain Res; 2017 Jan; 317():179-187. PubMed ID: 27641325
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Action preparation modulates sensory perception in unseen personal space: An electrophysiological investigation.
    Job XE; de Fockert JW; van Velzen J
    Neuropsychologia; 2016 Aug; 89():445-452. PubMed ID: 27450265
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two mechanisms of protracted reaction times mediated by dissociable cortical networks.
    Herath P; Young J; Roland P
    Eur J Neurosci; 2002 Aug; 16(3):529-39. PubMed ID: 12193197
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A cortical network sensitive to stimulus salience in a neutral behavioral context across multiple sensory modalities.
    Downar J; Crawley AP; Mikulis DJ; Davis KD
    J Neurophysiol; 2002 Jan; 87(1):615-20. PubMed ID: 11784775
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial interference during bimanual coordination: differential brain networks associated with control of movement amplitude and direction.
    Wenderoth N; Debaere F; Sunaert S; Swinnen SP
    Hum Brain Mapp; 2005 Dec; 26(4):286-300. PubMed ID: 15965999
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activation of sensory-motor areas in sentence comprehension.
    Desai RH; Binder JR; Conant LL; Seidenberg MS
    Cereb Cortex; 2010 Feb; 20(2):468-78. PubMed ID: 19546154
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neural mechanisms of movement speed and tau as revealed by magnetoencephalography.
    Tan H-RM; Leuthold AC; Lee DN; Lynch JK; Georgopoulos AP
    Exp Brain Res; 2009 Jun; 195(4):541-52. PubMed ID: 19424687
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predictability of the target stimulus for sensory-guided movement modulates early somatosensory cortical potentials.
    Legon W; Staines WR
    Clin Neurophysiol; 2006 Jun; 117(6):1345-53. PubMed ID: 16644272
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensory acquisition in the cerebellum: an FMRI study of cerebrocerebellar interaction during visual duration discrimination.
    Shih LY; Chen LF; Kuo WJ; Yeh TC; Wu YT; Tzeng OJ; Hsieh JC
    Cerebellum; 2009 Jun; 8(2):116-26. PubMed ID: 19048357
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparing tactile pattern and vibrotactile frequency discrimination: a human FMRI study.
    Li Hegner Y; Lee Y; Grodd W; Braun C
    J Neurophysiol; 2010 Jun; 103(6):3115-22. PubMed ID: 20457848
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effective connectivity during haptic perception: a study using Granger causality analysis of functional magnetic resonance imaging data.
    Deshpande G; Hu X; Stilla R; Sathian K
    Neuroimage; 2008 May; 40(4):1807-14. PubMed ID: 18329290
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tactile discrimination of grating orientation: fMRI activation patterns.
    Zhang M; Mariola E; Stilla R; Stoesz M; Mao H; Hu X; Sathian K
    Hum Brain Mapp; 2005 Aug; 25(4):370-7. PubMed ID: 15852384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tracking the mind's image in the brain II: transcranial magnetic stimulation reveals parietal asymmetry in visuospatial imagery.
    Sack AT; Sperling JM; Prvulovic D; Formisano E; Goebel R; Di Salle F; Dierks T; Linden DE
    Neuron; 2002 Jul; 35(1):195-204. PubMed ID: 12123619
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visual and tactile guidance of dexterous manipulation tasks: an fMRI study.
    Talati A; Valero-Cuevas FJ; Hirsch J
    Percept Mot Skills; 2005 Aug; 101(1):317-34. PubMed ID: 16353365
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crossmodal spatial influences of touch on extrastriate visual areas take current gaze direction into account.
    Macaluso E; Frith CD; Driver J
    Neuron; 2002 May; 34(4):647-58. PubMed ID: 12062047
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cross-Modal Attention Effects in the Vestibular Cortex during Attentive Tracking of Moving Objects.
    Frank SM; Sun L; Forster L; Tse PU; Greenlee MW
    J Neurosci; 2016 Dec; 36(50):12720-12728. PubMed ID: 27821579
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Delay activity and sensory-motor translation during planned eye or hand movements to visual or tactile targets.
    Macaluso E; Frith CD; Driver J
    J Neurophysiol; 2007 Nov; 98(5):3081-94. PubMed ID: 17898151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.