BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 18095644)

  • 1. Profiling the Monascus pilosus proteome during nitrogen limitation.
    Lin WY; Chang JY; Hish CH; Pan TM
    J Agric Food Chem; 2008 Jan; 56(2):433-41. PubMed ID: 18095644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic response to intracellular proteins of Monascus pilosus grown under phosphate-limited complex medium with different growth rates and pigment production.
    Lin WY; Ting YC; Pan TM
    J Agric Food Chem; 2007 Jan; 55(2):467-74. PubMed ID: 17227081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteome response of Monascus pilosus during rice starch limitation with suppression of monascorubramine production.
    Lin WY; Chang JY; Hish CH; Pan TM
    J Agric Food Chem; 2007 Oct; 55(22):9226-34. PubMed ID: 17924709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteome changes in Caco-2 cells treated with Monascus-fermented red mold rice extract.
    Lin WY; Hsu WY; Hish CH; Pan TM
    J Agric Food Chem; 2007 Oct; 55(22):8987-94. PubMed ID: 17927198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic protein patterns and monascorubrin production revealed through proteomic approach for Monascus pilosus treated with cycloheximide.
    Lin WY; Chang JY; Tsai PC; Pan TM
    J Agric Food Chem; 2007 Jul; 55(14):5559-68. PubMed ID: 17559225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effects of enzyme inhibitors on the pigment synthesis in Monascus anka].
    Zhu L; Chang HP; Tang XY; Li KY; Cao YY
    Wei Sheng Wu Xue Bao; 2007 Aug; 47(4):706-9. PubMed ID: 17944377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteome analyses of Staphylococcus aureus in growing and non-growing cells: a physiological approach.
    Kohler C; Wolff S; Albrecht D; Fuchs S; Becher D; Büttner K; Engelmann S; Hecker M
    Int J Med Microbiol; 2005 Dec; 295(8):547-65. PubMed ID: 16325551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of stress on growth, pigment production and morphology of Monascus sp. in solid cultures.
    Babitha S; Soccol CR; Pandey A
    J Basic Microbiol; 2007 Apr; 47(2):118-26. PubMed ID: 17440913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein expression profiles in an endosymbiotic cyanobacterium revealed by a proteomic approach.
    Ekman M; Tollbäck P; Klint J; Bergman B
    Mol Plant Microbe Interact; 2006 Nov; 19(11):1251-61. PubMed ID: 17073307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the mokH gene encoding transcription factor for the upregulation of monacolin K biosynthesis in Monascus pilosus.
    Chen YP; Yuan GF; Hsieh SY; Lin YS; Wang WY; Liaw LL; Tseng CP
    J Agric Food Chem; 2010 Jan; 58(1):287-93. PubMed ID: 19968298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic and metabolomic analyses of the white-rot fungus Phanerochaete chrysosporium exposed to exogenous benzoic acid.
    Matsuzaki F; Shimizu M; Wariishi H
    J Proteome Res; 2008 Jun; 7(6):2342-50. PubMed ID: 18435559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The regulation mechanisms of soluble starch and glycerol for production of azaphilone pigments in Monascus purpureus FAFU618 as revealed by comparative proteomic and transcriptional analyses.
    Huang ZR; Zhou WB; Yang XL; Tong AJ; Hong JL; Guo WL; Li TT; Jia RB; Pan YY; Lin J; Lv XC; Liu B
    Food Res Int; 2018 Apr; 106():626-635. PubMed ID: 29579968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic Effects of the pksCT Gene on Monascus aurantiacus Li As3.4384 Using Gas Chromatography--Time-of-Flight Mass Spectrometry-Based Metabolomics.
    Huang Z; Zhang S; Xu Y; Li L; Li Y
    J Agric Food Chem; 2016 Feb; 64(7):1565-74. PubMed ID: 26824776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. mrflbA, encoding a putative FlbA, is involved in aerial hyphal development and secondary metabolite production in Monascus ruber M-7.
    Yang Y; Li L; Li X; Shao Y; Chen F
    Fungal Biol; 2012 Feb; 116(2):225-33. PubMed ID: 22289768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteome approach to characterize proteins induced by antagonist yeast and salicylic acid in peach fruit.
    Chan Z; Qin G; Xu X; Li B; Tian S
    J Proteome Res; 2007 May; 6(5):1677-88. PubMed ID: 17381148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monascus fermentation of dioscorea for increasing the production of cholesterol-lowering agent--monacolin K and antiinflammation agent--monascin.
    Lee CL; Wang JJ; Kuo SL; Pan TM
    Appl Microbiol Biotechnol; 2006 Oct; 72(6):1254-62. PubMed ID: 16568313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative proteomic analysis of Rhodosporidium toruloides during lipid accumulation.
    Liu H; Zhao X; Wang F; Li Y; Jiang X; Ye M; Zhao ZK; Zou H
    Yeast; 2009 Oct; 26(10):553-66. PubMed ID: 19784936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red yeast rice fermentation by selected Monascus sp. with deep-red color, lovastatin production but no citrinin, and effect of temperature-shift cultivation on lovastatin production.
    Tsukahara M; Shinzato N; Tamaki Y; Namihira T; Matsui T
    Appl Biochem Biotechnol; 2009 Aug; 158(2):476-82. PubMed ID: 19214788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Mga1, a G-protein alpha-subunit gene involved in regulating citrinin and pigment production in Monascus ruber M7.
    Li L; Shao Y; Li Q; Yang S; Chen F
    FEMS Microbiol Lett; 2010 Jul; 308(2):108-14. PubMed ID: 20500530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteome analysis of fatty liver in feed-deprived dairy cows reveals interaction of fuel sensing, calcium, fatty acid, and glycogen metabolism.
    Kuhla B; Albrecht D; Kuhla S; Metges CC
    Physiol Genomics; 2009 Apr; 37(2):88-98. PubMed ID: 19240300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.